
When to Arrive in a Congested System: Achieving
Equilibrium via Learning Algorithm

Abstract—Motivated by applications in competitive WiFi sens-
ing, and competition to grab user attention in social networks,
the problem of when to arrive at/sample a shared resource/server
platform with multiple players is considered. Server activity is
intermittent, with the server switching between between ON
and OFF periods alternatively. Each player spends a certain
cost to sample the server state, and due of competition, the
per-player service rate is inversely proportional to the number
of connected/arrived players. The objective of each player is
to arrive/sample the server as soon as any ON period begins
while incurring minimal sensing cost and to avoid having many
other players overlap in time with itself. For this competition
model, we propose a distributed randomized learning algorithm
(strategy to sample the server) for each player, which is shown
to converge to a unique non-trivial fixed point. The fixed point
is moreover shown to be a Nash equilibrium of a sensing game,
where each player’s utility function is demonstrated to possess
all the required selfishness tradeoffs.

I. INTRODUCTION

Consider a shared resource platform, where multiple users
are interested in exploiting the shared resource to the fullest.
The shared platform has intermittent activity periods, and
periodically transitions between active and inactive states in a
stochastic manner. Following some strategy, each user senses
the server and connects to it as soon as it discovers it to be in
active state. The competition aspect of this model is that all
users simultaneously connected to the server get service at a
rate that is inversely proportional to the number of connected
users. Each user thus has an incentive to sense (and connect to)
the server as soon as it turns active, and to encounter a minimal
number of other users during its connectivity time. Moreover,
there is a cost associated with each sampling, precluding
sampling at arbitrarily small intervals.

A concrete example of such a system is a large wireless
network with multiple access points (APs) deployed at fixed
locations in a given geographical area. Mobile nodes move
within the given area and encounter intermittent connectivity
to APs depending on their locations. To discover whether
any AP is within transmission range, a mobile node employs
sensing, which is equivalent to deciding to arrive in the system,
and which comes at a cost (battery usage). The mobile node
would like to sense (arrive) when the least number of other
users are connected to the same AP, since some form of fair
sharing is typically employed by the AP to divide its resources
equally between all the mobile nodes connected to it. Thus,
each mobile node wants to discover an AP as quickly as
possible (before other mobile nodes) and with minimal sensing
cost as possible.

Another setting that presents similar attributes is that of
grabbing user attention in social media under competition [1],
[2]. In a social network platform, user attention intensity varies
over time, and multiple players (advertisers, users) compete to
get as much utility (eyeballs, impressions) as possible. Treating
user attention as a limited, shared resource, each player has
to decide when to tweet or insert their ads given that there
are multiple such competing players, so that their tweets live
the longest in the limited, high intensity user attention span,
where each tweet incurs a certain cost. Players would want to
avoid tweeting together with other players, since if multiple
tweets are shared within a short span of time, each gets a
divided attention. Thus, given the intermittent user attention
intensity distribution, the problem is to find optimal tweet time
strategies under competition with a given per-tweet cost.

Our model is also suitable in the context of finding strategic
job submission times to cloud services, where the server is
always ON, but its price fluctuates depending on the demand
process. Thus, each player wants to avoid submitting jobs
together with other players (to incur lower price), subject to
its deadlines.

Special cases of this model have been studied in the recent
past. Jeong et al. [3] and Kumar et al. [4] consider only
one user without any competition, and find the exact optimal
sampling distribution given the server activity distribution.
In the concert queue problem [5], a server (ticket window)
opens and closes at fixed times, and the problem for each
customer is to decide when to arrive at the server queue
amidst many competing customers so as to minimize its sum
of waiting and service times. Explicit Nash equilibrium (NE)
arrival distributions have been found for this problem by Jain
et al. [5]. Another related model is that of distributed access in
wireless (WiFi) networks, where multiple nodes contend for
slots when they have packets to transmit, and transmissions are
successful only if one node ends up transmitting. Tang et al.
study the equilibrium question [6] for this setting when there is
an exponential back-off mechanism for contention resolution.

Compared to prior work, the problem considered here
covers a more general setting where a) there is uncertainty
in terms of platform activity periods, b) there is repeated
sensing/arrival (instead of single shot decision as in [5]), and
c) multiple nodes are served at the same time from a shared
resource.

Under strategic behavior from all competing players, with-
out cooperation, a natural goal from a system design stand-
point is to find stable operating points or equilibria from
which no player would prefer to deviate. Accordingly, the



objective of this paper is find an equilibrium strategy for each
competing player in this model, where the strategy for a player
is comprised of the decisions to sample the system or not,
at instants of time (where randomization is also allowed).
Towards this end, the typical approach is to identify a per-
node utility function, and try to find a NE for it, if it exists.
This approach is analytically intractable for the problem at
hand for most choices of natural utility functions.

To make analytical progress, we take an alternate route of
considering that the players are running a natural distributed
learning algorithm that adjusts its sensing behavior dynami-
cally in response to its perceived payoff thus far, and show
that it reaches equilibrium. Finding learning algorithms that
achieve equilibrium is a relatively uncharted territory, with
sporadic results available in literature. The most prominent of
these is provided by Friedman and Shenker [7], who show
that learning algorithms can achieve the NE in a two player
zero-sum game. A similar result is unfortunately false for a
three player game as shown by Daskalakis et al. [8]. For a
brief survey, we refer the reader to the work of Shoham et al.
[9].

In general, for congestion games (that are also potential
games) where the congestion costs are additive, there is prior
work showing that multiplicative weights learning algorithms
converge to Nash equilibrium [10], [11]. For non-congestion
games, learning algorithms achieving the Nash equilibrium
has been briefly considered [12]–[14]. In particular, Altman
and Shimkin [12] study a model where there are two servers
(one employing processor sharing and other dedicated), and
each user on arrival has to decide which server to join, given
the current load on the servers, to minimize its expected
service completion time; here, a learning algorithm is shown to
achieve the Nash equilibrium. Learning algorithms have also
been used to achieve Nash equilibrium in spectrum access
games [13], [14].

An important difference of this work from prior work is that
whereas learning algorithms are typically shown to achieve a
NE of a static or one-shot game (e.g. in congestion games), in
this paper, the considered game itself is inherently repeated,
where each player has to make its decisions repeatedly.

In the model considered here, it is easy to argue that a
deterministic sensing/arrival strategy cannot be an equilibrium
solution. Therefore, we consider that each player employs a
randomized strategy for sensing, i.e., in each slot it senses
with a certain probability. The learning algorithm we propose
(to update the sensing probability) learns the platform/server
activity period frequency by computing how often the server
was found active in previous sensing attempts, and implements
a form of congestion control by exponentially decreasing
its sensing probability with the number of other competing
nodes encountered by it. Thus, given the per-sensing cost,
the algorithm adapts to strike a balance between missing out
on server activity periods and encountering large number of
other nodes, when it senses the server. The learning algorithm
does not require explicit information about the other players’
strategies, and only depends on its accumulated reward. It

thus has a low ’learning overhead’ compared to best response
strategies, which require a player to know the exact strategies
that all other players followed in the previous round.

The main result of this paper is to show that the proposed
learning algorithm converges to a unique, non-trivial fixed
point. We also explicitly characterize the fixed point, and
show that it is in fact a NE for a sensing game in which
each player’s utility function has a particular form. As one
would expect, the per-player utility is increasing in its own
sensing probability, and decreasing in the other nodes’ sensing
probabilities, congestion and sensing costs. An additional
outcome of our approach is ‘utility shaping’, in the sense of
discovering a good/efficient choice of utility function; very
often, there are no Nash equilibria for a particular/natural
choice of utility function.

To prove our results, we first consider an expected version
of the learning algorithm, where all random variables are
replaced by their expected values. We then find the underlying
utility function that the expected learning algorithm is trying
to maximize for itself. Corresponding to this utility function,
we identify a multiplayer game G, and show that there is
a unique NE for this game, that is achieved by the best
response strategy. We subsequently show that the updates of
the expected learning algorithm converge to the best response
actions for the game G. Finally to show the convergence of
the actual learning algorithm to a fixed point, we show that
its updates also converge to the best response actions for G.

Some of the proof techniques used in this paper are similar
to those of Tang et al. [6]; however, the specific proofs
themselves are entirely different. We would like to note that
the proposed approach, as well as the analytical techniques
presented in this paper, are likely to be applicable in many
other related competition-based resource allocation models.

II. SYSTEM MODEL AND PRELIMINARIES

Consider a time-slotted system, where a server alternates
between two states {ON, OFF} following a two-state Markov
chain. The duration of the i

th
(i � 1) ON and OFF period is

denoted by C

i

and D

i

slots, respectively, where both C

i

and
D

i

are assumed to be independent for i � 1, and are geometric
random variables with parameters �

c

and �
d

, respectively. We
partition the total slots into frames, where each frame consists
of M consecutive time slots. Whenever convenient, we will
use k � 1 to index frames, and t 2 {1, 2, . . . ,M} to index
slots within a frame; the double-index notation (t, k) will thus
denote the t-th time slot in frame k.

Consider N players in a system that attempt to access this
server as often as possible. Player ` employs a probabilistic
sensing strategy {p

`

(k) : k � 1}, where p

`

(k) is the
probability with which player ` senses the server in each slot
within frame k, to check whether the server is in ON state.
Each player incurs a cost c

s

upon a sensing attempt.
If, on sensing, a player finds the server to be in the OFF

state, then the player senses with the same probability in each
slot until the end of that frame, and then updates the sensing
probability in the next frame (the update rule is described by



(1)). Alternatively, if the server is found to be in ON state, the
player joins/connects to the server. The service time (number
of slots needed for completion of service) for each player
is assumed to be geometrically distributed with parameter µ.
The player stays connected to the server until its service is
completed, or till the time the server remains in the ON state,
whichever is earlier. The case µ = 1 corresponds to player
requiring unlimited connection.

With this strategy, during an ON period, multiple players
may discover the server to be in the ON state and connect
to it, creating congestion for each other. The competition
or congestion aspect is modelled by assuming that the per-
player service rate is inversely proportional to the number
of connected players. Rather than directly incorporating the
congestion cost in terms of service completion times, we
consider an alternative, equivalent model in which all players
that connect to the server get the same service rate that they
would get if they were alone in the system. Hence each player
is active/connected to the server until its service is completed,
or till the time the server remains in the ON state, whichever is
earlier, independent of other players being active or not during
that time.

The congestion penalty is incorporated in the model via
the mechanism of adapting the sensing probability of player `
for the next frame depending on the number of other players
that were connected to the server in the current frame while
player ` was active. In other words, the more the number
of other active players during any one player’s active time,
the less is its probability of sensing in the next frame, where
the exact dependence is described in detail later. With this
mechanism, the long-term share of resource obtained by each
player is similar to that obtained in a mechanism by which
all active players are served simultaneously, with per-player
service rate being inversely proportional to the number of
connected players.

A player’s service is defined to be successful if its service
is completed before the end of the ON period during which it
started. The inherent objective for each player is to maximize
the number of successful service completions in time [0, t]

as t ! 1 given the per-sensing cost of c

s

. Hence one can
write a utility function for player `, as U

`

= f(N, c

s

,�

c

,�

d

),
where f is a decreasing function of N , c

s

, and �

d

, and an
increasing function of �

c

. The usual strategy of choosing a
particular f and then finding a NE achieving sensing strategy is
fairly complicated and analytically intractable for this problem.
Instead we consider learning type algorithms to define the
adaptive sensing strategies that can be shown to converge to
a fixed point/equilibrium.

A. Learning/adaptive sensing strategy

Let the set of players be denoted by � = {1, 2, . . . , N}; we
use the notation ��` = �\{`} to denote the set of all players
except player `. Let p

`

(k) be the probability with which player
` senses the AP throughout frame k (i.e., throughout the M

slots that make up the frame), and let p(k) ⌘ (p

`

(k))

1`N

be the sensing vector employed by the N players. We assume

the frame size M to be large, so that under a two-time
scale decomposition, the sensing probability is updated slowly
enough (i.e., before each frame starts), while at the same time
allowing players to learn about, and adapt to, the underlying
server ON-OFF process and other players’ strategies.

Let the server be in the ON state at time slot t, where the
server last came into the ON state at time slot t

c

 t. A player
is defined to be active at time slot t if it discovered the ON
state in time period [t

c

, t] and its service is not finished by
time slot t. We denote by X(t) 2 {0, . . . , N} the number of
players that are active at time slot t. Let us tag a player ` 2 �

for the remainder of the discussion. For a fixed frame k, for
the tagged player `, let 1Sense(t) denote the indicator random
variable that it senses at (t, k), 1S(t) the indicator random
variable that the server is in ON state at time slot t in frame
k, and 1

`

(t) the indicator random variable that the tagged
player ` is active at time slot t. For the tagged player `, at the
end of the k

th frame, i.e., at slot (M,k), define the random
variable ˆ

A(k) to be the empirical average of the number of
players that were active (including itself) for any slot in frame
k in which player ` was active in the system. Formally,

ˆ

A(k) =

( PM
t=1 1`(t)X(t)PM

t=1 1`(t)
if

P
M

t=1

1
`

(t) > 0,

0 otherwise.

We consider the following distributed sensing algorithm for
updating the sensing probability at the start of the next frame
k + 1:

p

`

(k + 1) = (k)max

(
p

min

, pstart
1

M

MX

t=1

(1� 1S(t))1Sense(t)

+ p

`

(k)⌘ exp

�cs
exp

�c0
ˆA(k)

1

M

MX

t=1

1S(t)1Sense(t)

+ p

`

(k)

1

M

MX

t=1

(1� 1Sense(t))}

)
^ 1 + (1� (k))p

`

(k),

(1)

with x ^ y = min{x, y}, and where p

min

> 0 is a preset
minimum sensing probability, c

0

and ⌘ are constants to be
chosen later, and (k) is the update step-size.

The second argument of the maximum in the sensing
algorithm (1) contains three complementary terms (only one
of them is non-zero for slot t in frame k), where the first
represents the empirical measure with which the AP was found
OFF on sensing scaled by a fixed reset sensing probability
pstart, the second weighs the number of competing players
(congestion penalty) and the cost of sensing exponentially
with the existing sensing probability, a constant ⌘ > 1, and
the empirical measure with which the AP was found ON on
sensing, and the third introduces a damping factor that resists
the change in sensing probability if sensing was not performed
often enough in that frame.

The basic idea behind the update (1) is to significantly
lower the sensing probability when there are a large number of
other active players found in the current frame. This directly



controls the congestion and incentivises sporadic sensing, and
can be thought of as a backoff mechanism to implement a
‘soft processor-sharing’ routine.

On the other hand, if the number of other active players is
low/moderate, and the empirical measure with which the AP
was found ON on sensing (that tracks the connection rate �

c

of the server) is high, the sensing probability is increased to
maximally utilise the opportunity provided by the server for
service completions by each player. In a complementary sense,
if the empirical measure with which the AP was found OFF on
sensing is high, then the first term dominates and tries to lower
the sensing probability. The sensing cost is also incorporated
explicitly and weighed exponentially to limit the total sensing
cost.

The following is the main result of the paper, showing
that the update strategy (1), when followed by all N players,
converges to a unique fixed point.

Theorem 1: If the following condition is satisfied

(N � 1)c

0

pstart ⌘
�c�d

(�c+�d)
2

h
1� ⌘

�d
�c+�d

i
2


1

1� (1� µ)(1� �

c

)

�
 1, (2)

then the sensing update strategy (1) when followed by all N
players converges to a unique fixed point, starting from any
initial point. The unique fixed point also corresponds to a Nash
equilibrium for a N player game, with individual utilities U

`

given by (6).
The left-hand side (LHS) of (2) is inherently a measure of

congestion seen by each player; condition (2) specifies the
congestion tolerance for the update algorithm that allows the
convergence to a fixed point. Since c

0

and ⌘ are parameters
under control, they can be chosen to satisfy (2) which de-
termines the actual trajectory of the proposed update strategy
(1).

For proving Theorem 1, we first consider an expected
version of the update strategy (1) and interpret that each
player is updating that expected version so as to maximize
some utility function for itself. Using that utility function, we
define a game, for which there is a unique Nash equilibrium
(under technical conditions) and to prove Theorem 1, show
that update strategy (1) converges to that Nash equilibrium.
Next, we consider the expected version of (1) and develop the
corresponding utility function and the game for the N players
in Section II-C.

B. A steady-state version of the update rule
Instead of directly analysing the trajectory of the update rule

(1), we first study an expected or steady state version of (1).
To this end, observe that within a frame of large enough size
M , the player sensing probabilities p ⌘ (p

i

)

1iN

, p
i

> 0 8i

are fixed. It follows that, within a frame, the {0, 1}

N -valued
stochastic process that tracks where player i, i = 1, . . . , N is
active (state 1) or not (state 0) at time slot t = 1, 2, . . ., is an
irreducible and aperiodic discrete time Markov chain. By the
ergodic theorem for discrete time Markov chains [15], the time
average of the number of players seen by a tagged player `

during which it was active, converges with probability 1 to the
steady state expected number of active players in the server
conditioned on tagged player ` being active, as the number
of time slots M tend to 1. For a fixed p, let A(p) be the
expected number of active players seen by the active tagged
player including itself under steady state. Next, in Lemma 2,
we find an explicit expression for A(p), whose proof can be
found in Appendix A.

Lemma 2: For a fixed sensing probability vector p > 0, the
expected number of players seen by the tagged player (includ-
ing itself) in steady state satisfies A(p) = 1 +

P
j2��`

 

j

,
where  

j

’s are given by

 

j

=

p

j

�

c

[1� (1� µ)(1� �

c

)]

1

[�

c

+ p

j

(1� �

c

)]

. (3)

Given p(k) at the beginning of frame k, and a sufficiently
large frame size M , we replace ˆ

A(k) by A(p(k)), and all
other random variables by their expected values in (1), to
obtain the following ‘expected’ update equation:
p

`

(k + 1) =

(k)max{p

min

, pstartE {(1� 1S((1, k)))1Sense((1, k))|p(k)}

+ p

`

(k)⌘ exp

�cs
exp

�c0A(p(k)) E {1S((1, k))1Sense((1, k))|p(k)}

+ p

`

(k)E {(1� 1Sense((1, k)))|p(k)}}+ (1� (k))p

`

(k).

(4)

Note that E {(1� 1S((1, k)))1Sense((1, k))|p(k)} =

�d
�c+�d

E {1Sense((1, k))|p(k)}, since the AP mode
is independent of sampling given p(k), and
E {1Sense((1, k))|p(k)} = p

`

(k). From Lemma 2, (4)
reduces to p

`

(k + 1)

= (k)max{p

min

, pstart
�

d

�

c

+ �

d

p

`

(k),

+⌘ exp

�cs
�

c

�

c

+ �

d

p

`

(k)

2

Y

j2��`

exp

�c0 j

+p

`

(k)(1� p

`

(k))}+ (1� (k))p

`

(k). (5)

C. Game-theoretic justification for the update rule and explicit
utility structure

In this section, we adopt the view that each player updates
its sensing strategy according to (5), so as to maximize some
utility function for itself. Towards this end, consider a non-
cooperative game G = {N, p

`

, U

`

, ` 2 [1 : N ]} with N

players, utility function U

`

and strategy p

`

for player `.
The game G has a Nash equilibrium p⇤ if U

`

(p

`

,p⇤
�`) 

U

`

(p

⇤
`

,p⇤
�`), 8 ` 2 [1 : N ]. Next, in Theorem 3, we identify

the utility function that each player is trying to selfishly
maximize via update strategy (5).

Theorem 3: The utility function for player ` that (5) attempts
to maximize is given by U

`

(p) = U

`

(p

`

, p�`) =

pstart
�c

�c + �d

p2`
2

+

p3`
3

0

@⌘ exp�cs �d

�c + �d

Y

i2��`

e�c0 i � 1

1

A . (6)

Moreover, if

pstart
�

c

�

c

+ �

d

+ ⌘ exp

�cs
�

d

�

c

+ �

d

< 1, (7)



then there exists a valid non-zero NE p⇤ for G that satisfies,

p

⇤
`

=

pstart
�c

�c+�dh
1�⌘ �d

�c+�d

Q
i2��`

e

�c0 
⇤
i

i .

The proof is presented in Appendix B.
The selfish utility function U

`

(p

`

, p�`) defined by (6) con-
tains two terms that individually capture the natural benefit and
cost for each user. The first term scales the sensing probability
with the duty cycle (fraction of time the server is active)
�c

�c+�d
, so as to maximally utilize the server activity periods.

The second term corresponds to the congestion (via  
i

) and
the sensing cost, and the utility decreases with the increasing
number of competing players and the sensing cost.

The best response strategy for player `, assuming all
other player strategies p�` are fixed, is given by: p

br
`

=

argmax

pminp`
U

`

(p

`

, p�`), which for game G (from @U`
@p`

= 0)
evaluates to

p

br
`

=

pstart
�c

�c+�dh
1� ⌘

�d
�c+�d

Q
i2��`

e

�c0 i

i
. (8)

We next show, via a contraction mapping argument, that the
Nash equilibrium for the game G is unique, and that the best
response strategy (8) achieves it (Proof in Appendix C).

Theorem 4: If condition (2) holds, then the Nash equilibrium
for the considered game G is unique, and the best response
strategy (8) converges to the unique equilibrium.
Since the Nash equilibrium for the considered game G is
unique, next, we use that to prove Theorem 1 by showing that
the original update strategy (1) converges to the best response
solution (8) for game G.

D. Proof of Theorem 1

We are now ready to work towards proving Theorem 1.
The first step in this direction is to reinterpret the expected
update equation (5) in terms of a gradient descent algorithm
for maximizing U

`

by player `. Consider a gradient descent
algorithm with step size  for each player `,

p

`

(k + 1) = max

⇢
p

min

, p

`

(k) + 

@U

`

(p(k))
@p

`

�
, (9)

that is identical to the expected update equation (5), which is
no surprise because of the definition of utility U

`

.
The first result we have with the gradient descent algorithm

is its convergence to the NE depending on the step-size.
Lemma 5: Under the condition (7), with stepsize   1, the

iterates of the gradient descent algorithm (9) converge to the
best response solution (8) for player `, under fixed p�`.
Thus, if all other players freeze their strategies p�`, then
player ` can reach the best response to p�` by running the
gradient descent update equation (9) or the expected update
strategy (5). Lemma 5 is applicable as long as each player’s
strategy is updated sequentially, which requires time dilation
(i.e., each player updates its strategy not in every frame but
after multiple frames depending on the convergence time) for
converging to the best response solution, which eventually
converges to the global NE as shown in Theorem 4.

The proof of Lemma 5 is provided in Appendix D, where
we show that the utility function is �-smooth with � = 2,
using which the convergence is established.

Finally, we complete the proof of Theorem 1, by showing
that the proposed update algorithm (1) converges to the best
response strategy (8). Towards that end we make a corre-
spondence between a stochastic sub-gradient algorithm and
the update strategy (1) as follows.

E. A Stochastic Sub-Gradient interpretation of Update Strat-
egy (1)

Let v
`

(k) = �p

`

(k) +

1

M

P
M

t=1

pstart(1� 1S(t))1Sense(t)

+⌘p

`

(k) exp

�cs
exp

�c0A(t)

1

M

MX

t=1

1S(t)1Sense(t)

+

p

`

(k)

M

MX

t=1

(1� 1Sense(t)). (10)

From the definition of utility function U

`

(p) (6), it is easy
to check that E{v

`

|p} =

@U`(p)
@p`

, and the stochastic gradient
descent algorithm counterpart of (9) is

p

`

(k + 1) = max{p̃

min

, p

`

(k) + (k)v

`

(k)}, (11)

where p̃

min

is a modified minimum sensing probability we will
choose to satisfy technical condition required in Theorem 6.
From (10), it easily follows that (11) is equal to the proposed
sensing strategy (1) with p

min

� p̃

min

, and equivalently
the update strategy (1) is solving a stochastic sub-gradient
maximization of the utility function U

`

.
In a manner similar to Lemma 5, we next show that

stochastic gradient descent algorithm (11) converges to the
best response solution (8) for each player ` in the game G for
fixed strategies p�` under appropriate choice of step-size .

Theorem 6: With fixed p�`, for each player `, the iterates
of (11), converge to the best response solution (8) with
probability 1 if the following conditions hold,

1) The step size (k) satisfies (k) � 0,

P1
k=0

(k) = 1

and
P1

k=0

(k)

2

< 1.
2) p̃

min

=

pstart�c

2

[

�c+�d[1�⌘e�Nc0 min
]]

� p

min

, where  
min

is
the value of  

i

at p
i

= p

min

8i 2 ��`.
The proof is provided in Appendix E. With this, we have
completed the proof of Theorem 1, since we have shown
that the proposed sensing strategy (1) converges (if updated
sequentially by each player) to the best response solution,
which converges to a fixed point when the game G has a unique
Nash equilibrium under condition (2).

The more important implication of Theorem 1 is that it
shows the convergence of the proposed sensing strategy (1),
even though it does not have precise knowledge of other nodes’
sensing probabilities p�`, but only gets to observe the number
of competing nodes ˆ

A(t) on each ON sensing. Thus, compared
to the best response strategy, it has very low overhead of
learning, and therefore suitable for practical applications.

In the next section, we consider the competitive WiFi
sensing application of the considered model discussed in the



Introduction, and present some numerical results to illustrate
the convergence of the proposed update strategies towards the
best response solutions for a realistic setting discussed by Kim
et al. [16].

III. NUMERICAL RESULTS

We carry out numerical experiments in the WiFi network
testbed model presented in [16], where in an area of 2000

acres, there are 31 APs distributed uniformly randomly with
corresponding density ⇢ =

31

2000⇥4046

APs/m2. Total number
of mobiles is N = 25, and each mobile node travels at a
speed of v = 30 m/s in random orientation. The mobile is
declared to be connected to an AP, if it is within R = 250

m from any AP. Under these settings, from [16], we have
�

c

= 2Rv⇢ = 0.05745 and �
d

=

v

R

� 2Rv⇢ = 0.06253, and
service rate µ = 5�

c

. We let pstart = 0.8, then from (7), we
need ⌘ < 1.3. For simulation, we consider ⌘ = 0.8. Moreover,
to satisfy (2), we take c

0

= 0.005.
Under this setting, let p⇤ be an equilibrium point. In Fig.

1, we plot the utility function for a tagged user `, as a
function of its sensing probability p

`

, when all other users
are using the equilibrium strategy p⇤

�`. The optimal point on
the utility function curve thus corresponds to the equilibrium
point p⇤. We also plot the trajectories of utilities obtained
by best response updates, the gradient descent updates, and
the stochastic gradient updates (actual learning algorithm),
and observe that all three updates converge to the equilibrium
point.

Fig. 1. The utility function U`(p`,p�`) iterations of the three update
algorithms. Note that Stochastic Gradient Descent is the proposed learning
algorithm (1) requiring no information about other players’ strategies, while
the other algorithms are based on knowing other players’ strategies and are
thus practically unrealistic.

Corresponding to the setting in Fig. 1, we also plot the
trajectories of the sensing probabilities for the three update
strategies in Fig. 2 as a function of time, and observe that

Fig. 2. The trajectories of the three update algorithms over time.

the stochastic gradient descent updates are the noisiest as
expected.

IV. CONCLUSIONS

In this paper, we considered competition models when there
is uncertainty about the underlying resource availability, and
there is competition from other users that are trying to extract
maximum share of the available resource. Rather than directly
considering a particular utility function, we instead started with
an intuitive distributed adaptive strategy and showed that it
converges to the Nash equilibrium of a sensing game with rea-
sonable utility function for the studied problem. The approach
presented in this paper is expected to be useful for many other
related settings, e.g., uplink scheduling with quality of service
guarantees, device-to-device communications etc.
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APPENDIX A
PROOF OF LEMMA 2

Let E be the event that the server is in state ON at time slot
t, and let the ongoing ON period at time slot t start at time
slot 0 (we condition it appropriately later). Let s

i

denote the
service duration for player i, a geometric random variable with
parameter µ. Then, player i is active at time slot t if it senses
at time slot ⇣ 2 [0, t], and its service duration s

i

� t� ⇣.
Hence under event E , the probability that player i is active

at time t is

�

i

(t) =

tX

⇣=0

p

i

(1� p

i

)

⇣

Pr(s

i

� t� ⇣),

=

tX

⇣=0

p

i

(1� p

i

)

⇣

(1� µ)

t�⇣
,

and the expected number of active players in the system at
time t are,

E{n(t)|E} = 1 +

X

i2��`

�

i

(t),

where 1 corresponds to player ` being active (conditioned
tagged player) and

P
i2��`

�

i

(t) to players other than `.

Now, we uncondition E[n(t)] (to get E{E{n(t)|E}} =

E [A(t)|p(t)]) with respect to event E (the length of the ON
period C that started at time 0 to be at least t), as follows.

E [A(t)|p(t)] =

1X

t=0

0

@
1 +

X

i2��`

�

i

(t)

1

A
Pr(C = t)

=

1X

t=0

0

@
1 +

X

i2��`

�

i

(t)

1

A
�

c

(1� �

c

)

t

,

= 1 +

X

i2��`

1X

t=0

tX

⇣=0

p

i

(1� p

i

)

⇣

(1� µ)

t�⇣

�

c

(1� �

c

)

t

.

Interchanging the order of summation indexed by t and ⇣, we
get E [A(t)|p(t)]

= 1 +

X

i2��`

1X

⇣=0

1X

t=⇣

p

i

(1� p

i

)

⇣

(1� µ)

t�⇣
�

c

(1� �

c

)

t

,

= 1 +

X

i2��`

 

i

,

where

 

i

, p

i

�

c

[1� (1� µ)(1� �

c

)]

1

[1� (1� p

i

)(1� �

c

)]

. 8i 2 ��`.
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In order to obtain a utility function corresponding to the
expected update equation (5), consider the equilibrium point
p⇤ for (5), with p

min

< p

⇤
`

< 1, 8 `, for which the update
equation will satisfy the following fixed point equation,

p

⇤
`

= pstart
�

d

�

c

+ �

d

p

⇤
`

+ p

⇤
`

(1� p

⇤
`

)

+⌘ exp

�cs
�

c

�

c

+ �

d

(p

⇤
`

)

2

Y

i2��`

exp

�c0 
⇤
i
, (12)

where  ⇤
i

is the function  
i

(p

i

) evaluated when p

⇤
i

. We need
0  p

⇤
`

 1, which is satisfied as long as (7) is satisfied.
Using (5), inherently each player is trying to maximize

some utility function U

`

, and if at equilibrium (12) is satisfied,
then one obvious choice of such utility function is that which
satisfies @U`(p)

@pl
= 0 at p⇤. Thus, by moving p

`

to RHS in (12),
we have

@U

`

(p)
@p

`

= pstart
�

d

�

c

+ �

d

p

`

+ p

`

(1� p

`

)� p

`

+⌘ exp

�cs
�

c

�

c

+ �

d

p

2

`

Y

i2��`

exp

�c0 i
,

which gives the utility function (6) for player ` (unique upto
to a constant), The set {p

`

|p

min

 p

`

 1} is a non-empty
compact convex set on R. Moreover, the utility function U

`

(6) is quasi-concave and continuous in p

`

(for lack of space
we omit the proof here). Thus, using the Proposition 20.3 in
[17] there exists a Nash equilibrium, where (12) is satisfied
with  

i

replaced by  ⇤
i

.



APPENDIX C
PROOF OF THEOREM 4

We use the following Theorem from [18] to prove this result.
Theorem 7: Let M be a complete metric space with metric

d, and f : M ! M be a mapping. Assume that there exists a
constant � such that 0  � < 1 and d(f(v), f(u))  �d(v, u)

for all u, v 2 M ; such an f is called a contraction. Then f

has a unique fixed point; that is, there exists a unique u

⇤
2 M

such that f(u⇤
) = u

⇤
. Furthermore, the sequence u(t+ 1) =

f(u(t)) converges to this unique fixed point.
We will consider the best response strategy p

br

`

as the
function f , and apply the above theorem with M being
the Euclidean space RN endowed with a norm || · ||

2

. Let
d(·) be the distance metric induced by this norm. Let ||@f

@x

||

be the Jacobian, then from properties of matrix norm [19],
the following is true: d(f(v), f(u)) = ||f(v) � f(u)|| 

||

@f

@x

||||u � v|| = ||

@f

@x

||d(v, u), and for proving that f is a
contraction mapping, it is sufficient to show that ||

@f

@x

|| < 1

everywhere in x, and then invoke Theorem 7 to prove the
claim.

Next, we work towards showing the infinity norm of
J (J

`j

, @p

br
`

@pj
) is less than 1 which implies that ||@f

@x

|| < 1 for
all players `. By definition, J

`j

=

8
>>><

>>>:

�c0pstart⌘ exp

�cs �c�d
(�c+�d)2

(

Q
i2��`

e

�c0 i
)

P
k2��`

@ k
@p`h

1�⌘ exp

�cs
�d

�c+�d

Q
i2��`

e

�c0 i

i2 , if ` = j,

�c0pstart⌘ exp

�cs �c�d
(�c+�d)2

(

Q
i2��`

e

�c0 i
)

h
1�⌘ exp

�cs
�d

�c+�d

Q
i2��`

e

�c0 i

i2
@ j

@pj
, o.w.

From the definition of { 

k

}

k2��` in (3), we have @ k

@p`
=

0 8k 2 ��`. Therefore, J
`j

= 0 for ` = j. Next, we first
bound the partial derivative @ j

@pj
by rewriting the definition of

 

j

from (3) as,

 

j

=

h

1

p

j

h

2

+ h

3

p

j

,

where h

1

= �

c

, h

2

= [1 � (1 � µ)(1 � �

c

)]�

c

, and h

3

=

(1� �

c

)[1� (1� µ)(1� �

c

)]. Taking the partial derivative of
 

j

w.r.t p
j

, we get

@ 

j

@p

j

=

h

1

h

2

(h

2

+ h

3

p

j

)

2

,

which trivially imply the following bounds,

h

1

h

2

(h

2

+ h

3

)

2



@ 

j

@p

j



h

1

h

2

.

Using the expressions for h
i

, we get the following bounds

�

2

c

[1� (1� µ)(1� �

c

)]



@ 

j

@p

j



1

[1� (1� µ)(1� �

c

)]

. (13)

We now upper bound ||J||1 = max

`

P
N

j=1

|J

`j

|, as fol-
lows. Since J

`,`

= 0, and J

`,j

< 0, we have ||J||1

= max

`

8
><

>:

X

j2��`

c0 pstart ⌘ exp

�cs
�c�d

(�c+�d)
2 (

Q
i2��`

e

�c0 i
)

h
@ j

@pj

i

h
1� ⌘ exp

�cs �d
�c+�d

Q
i2��`

e

�c0 i

i
2

9
>=

>;
,

(a)

 max

`

8
><

>:

X

j2��`

c

0

pstart ⌘ exp
�cs �c�d

(�c+�d)
2

h
1� ⌘ exp

�cs �d
�c+�d

i
2


@ 

j

@p

j

�
9
>=

>;
,

(b)

 max

`

8
><

>:
|��`|

c

0

pstart ⌘ exp
�cs �c�d

(�c+�d)
2

h
1� ⌘ exp

�cs �d
�c+�d

i
2


@ 

j

@p

j

�
9
>=

>;
,

(c)

 max

`

8
><

>:

(N � 1)c

0

pstart ⌘ exp
�cs �c�d

(�c+�d)
2

h
1� ⌘ exp

�cs �d
�c+�d

i
2


@ 

j

@p

j

�
9
>=

>;
,

(d)

 max

`

8
><

>:

(N � 1)c

0

pstart ⌘ exp
�cs �c�d

(�c+�d)
2

h
1� ⌘ exp

�cs �d
�c+�d

i
2


1

1� (1� µ)(1� �

c

)

��
, (14)

where (a) follows since
Q

i2��`
e

�c0 i
 1, (b) follows by

replacing the outer sum by ��`, (c) follows since |��`| =
N � 1, and in (d) we use the upper bound (13).

Note that the argument of the max in (14) does not depend
on `, hence to make ||J||1  1 it is sufficient for the argument
of the max to be less than 1, i.e.

(N � 1)c

0

pstart ⌘ exp
�cs �c�d

(�c+�d)
2

h
1

1�(1�µ)(1��c)

i

h
1� ⌘ exp

�cs �d
�c+�d

i
2

< 1.

This inequality is satisfied by choosing appropriately the
values of parameters ⌘ and c

0

as specified in condition (2).
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Definition 8: A function f : R ! R is Lipschitz continuous
with constant L < 1 if ||f(x) � f(y)||  L||x � y|| 8 x, y.
Moreover, a function f whose derivative is Lipschitz con-
tinuous with constant � < 1, i.e., ||rf(x) � rf(y)|| 

�||x� y|| 8 x, y, is called a �-smooth function.
We will use the following Theorem to prove Lemma 5.
Theorem 9: [20, §1.2.3] Let f be a � smooth function and

f

⇤ = min f(x) > �1. Then the gradient descent algorithm
with a constant step size  <

2

�

converges to a stationary point
i.e., the set {x : rf(x) = 0}

For fixed p�`, let player ` update the strategy using the
gradient descent algorithm, and let f ⌘ U

`

. For player `, the
gradient expression is given by,

rf =

@U

`

@p

`

= pstart
�

c

�

c

+ �

d

p

`

+ p

`

(1� p

`

)� p

`

+⌘ exp

�cs
�

d

�

c

+ �

d

p

2

`

Y

i2��`

e

�c0 i
. (15)



Now we check the �-smoothness condition for f , and
find a bound on the constant as follows. For that purpose,����

����
@U`
@p`

����
p`=x

�

����
@U`
@p`

����
p`=y

����

=

����pstart
�

c

�

c

+ �

d

(x� y)� x

2

+ y

2

+⌘ exp

�cs
�

d

�

c

+ �

d

(x

2

� y

2

)

Y

i2��`

e

�c0 i

����,

(a)

 |x� y|

����pstart
�

c

�

c

+ �

d

� (x+ y)

+⌘ exp

�cs
�

d

�

c

+ �

d

(x+ y)

Y

i2��`

e

�c0 i

������
,

(b)

 |x� y|

����pstart
�

c

�

c

+ �

d

�

0

@
1� ⌘ exp

�cs
�

d

�

c

+ �

d

Y

i2��`

e

�c0 i

1

A
(x+ y)

������
,

(c)

 ||(x, p�`)� (y, p�`)||

����pstart
�

c

�

c

+ �

d

�

0

@
1� ⌘ exp

�cs
�

d

�

c

+ �

d

Y

i2��`

e

�c0 i

1

A
(x+ y)

������
,(16)

where (a) follows since |pq|  |p||q| 8p, q 2 R, (b) involves
rearrangement of terms, and (c) follows since |x � y| 

||(x, p�`)� (y, p�`)||, where (x, p�`) is the N -length vector.
If (7) holds, then each of the two terms of (7) are < 1, namely:

0 < ⌘ exp

�cs
�

d

�

c

+ �

d

< 1

and
0 < pstart

�

c

�

c

+ �

d

< 1.

Moreover, we have
Q

i2��`
e

�c0 i
> 0, x  1, and y  1.

Using these inequalities, the second term in right-hand side of
(16), can be bounded by 2 and we get
����

����
@U

`

@p

`

����
p`=x

�

����
@U

`

@p

`

����
p`=y

���� < 2||(x, p�`)� (y, p�`)||. (17)

Thus, U
`

is �-smooth with � < 2. Moreover, since � < 2, 9
a ✏ > 0 such that, 2

�

> 1+✏. Thus, from Theorem 9, if stepsize
 satisfies,  < 1+ ✏, then the iterates of the gradient descent
algorithm (9) converge to the stationary point. For fixed p�`,
the stationary point is the best response solution, and hence
we have the result.
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Theorem 10: [Theorem 6.2 [21]] Consider

max

x2[a,b]

F (x), (18)

where F is a concave, continuous one-dimensional function,
and let X⇤ be the set of optimal solutions. Consider the fol-
lowing stochastic subgradient projection method to solve (18):
x(t + 1) = max{a,min{b, x(t) + s(t)⇠(t)}}, t = 0, 1, 2, . . .

If the following conditions are satisfied
1) F (x

⇤
)� F (x(t)),

 E[⇠(t)|x(0), . . . , x(t)]{x⇤
� x(t)}] + �

0

(t), (19)

where �
0

(t) may depend on (x(0), . . . , x(t)), x

⇤
2 X

⇤,
2) s(t) is the step size that satisfies, s(t) � 0,

P1
t=0

s(t) =

1, and
3)

P1
t=0

E
⇥
s(t)|�

0

(t)|+ s

2

(t)|⇠(t)|

2

⇤
< 1,

Then lim

t!1 x(t) 2 X

⇤ with probability 1.
We will use Theorem 10 to prove Theorem 6. From (11),

the proposed learning algorithm is

p

`

(t+ 1) = max{p

min

, p

`

(t) + (t)v

`

(t)}, (20)

where we will choose p

min

� p̃

min

to satisfy conditions of
Theorem 10.

We first note that U

`

(p) is concave for p

`

2 [p

1

`

, 1]

from Lemma 11, where p

1

`

=

pstart�c

2

h
�c+�d

h
1�⌘

Q
i2��`

e

�c0 i

ii
.

Thereafter, in order to apply the Theorem 10 for our system,
make use of the following mappings: p

`

$ x, U
`

(p

`

) $ F (x),
p̃

min

$ a, 1 $ b, {pbr
`

} $ X

⇤, and v

`

(t) $ ⇠(t). Also note
that the best response strategy p

br
`

(8), satisfies p

br
`

= 2p

1

`

.
Thus, we choose p̃

min

= max{p

min

, p

1

`

}.
Recall that for fixed p�` (strategy of all other players), the

maximizer of the utility function U

`

is p

br
`

, to which we want
the update equation (20) to converge. Thus, to use Theorem 10
we need to need to ensure that pbr

`

does indeed lie in the range
[a, b] = [p̃

min

, 1]. In order to satisfy p

br
`

2 [p̃

min

, 1], we need
both p

min

 p

br
`

and p

1

`

 p

br
`

, where the latter is automatically
satisfied since p

br
`

= 2p

1

`

, and the former because of condition
2 in our theorem statement. Thus, we have max{p

min

, p

1

`

} =

p̃

min

 p

br
`

 1 8` 2 ��`.
Since the utility function U

`

(p

`

) is strictly concave within
the range p

`

2 [p̃

min

, 1] (Lemma 11) and E{v
`

|p} =

@U`(p)
@p`

,
(19) holds with �

0

(t) = 0. Moreover, as we have diminishing
step-size (k) which satisfies condition 1 of our theorem
statement, and |v(t)|  (⌘ + pstart) (easy to see from (10)).
Hence, all the required conditions for Theorem 10 are satisfied,
and we conclude that p

`

(t) following (20) converges to the best
response strategy p

br
`

with probability 1.
Lemma 11: The utility function U

`

is concave in p

`

for
p

`

2 [p

1

`

, 1], where p

1

`

=

pstart�c

2

h
�c+�d

h
1�⌘

Q
i2��`

e

�c0 i

ii .

Proof: Note that @

2
U`

@p`@pk

=

(
pstart

�c
�c+�d

� 2p

`

h
1� ⌘

�d
�c+�d

⇣Q
i2��`

e

�c0 i

⌘i
, for k = `,

�c

0

⌘

�d
�c+�d

p

2

`

Q
i2��`

e

�c0 i @ k

@pk
, o.w.

(21)
Thus, for p

`

2 [p

1

`

, 1], @
2
U`

@p

2
`

 0. 2


