When to Arrive in a Congested System: Achieving Equilibrium via Learning Algorithm

Abstract—Motivated by applications in competitive WiFi sensing, and competition to grab user attention in social networks, the problem of when to arrive at/sample a shared resource/server platform with multiple players is considered. Server activity is intermittent, with the server switching between ON and OFF periods alternatively. Each player spends a certain cost to sample the server state, and due of competition, the per-player service rate is inversely proportional to the number of connected/arrived players. The objective of each player is to arrive/sample the server as soon as any ON period begins while incurring minimal sensing cost and to avoid having many other players overlap in time with itself. For this competition model, we propose a distributed randomized learning algorithm (strategy to sample the server) for each player, which is shown to converge to a unique non-trivial fixed point. The fixed point is moreover shown to be a Nash equilibrium of a sensing game, where each player’s utility function is demonstrated to possess all the required selfishness tradeoffs.

I. INTRODUCTION

Consider a shared resource platform, where multiple users are interested in exploiting the shared resource to the fullest. The shared platform has intermittent activity periods, and periodically transitions between active and inactive states in a stochastic manner. Following some strategy, each user senses the server and connects to it as soon as it discovers it to be in active state. The competition aspect of this model is that all users simultaneously connected to the server get service at a rate that is inversely proportional to the number of connected users. Each user thus has an incentive to sense (and connect to) the server as soon as it turns active, and to encounter a minimal number of other users during its connectivity time. Moreover, there is a cost associated with each sampling, precluding sampling at arbitrarily small intervals.

A concrete example of such a system is a large wireless network with multiple access points (APs) deployed at fixed locations in a given geographical area. Mobile nodes move within the given area and encounter intermittent connectivity to APs depending on their locations. To discover whether any AP is within transmission range, a mobile node employs sensing, which is equivalent to deciding to arrive in the system, and which comes at a cost (battery usage). The mobile node would like to sense (arrive) when the least number of other users are connected to the same AP, since some form of fair sharing is typically employed by the AP to divide its resources equally between all the mobile nodes connected to it. Thus, each mobile node wants to discover an AP as quickly as possible (before other mobile nodes) and with minimal sensing cost as possible.

Another setting that presents similar attributes is that of grabbing user attention in social media under competition [1], [2]. In a social network platform, user attention intensity varies over time, and multiple players (advertisers, users) compete to get as much utility (eyeballs, impressions) as possible. Treating user attention as a limited, shared resource, each player has to decide when to tweet or insert their ads given that there are multiple such competing players, so that their tweets live the longest in the limited, high intensity user attention span, where each tweet incurs a certain cost. Players would want to avoid tweeting together with other players, since if multiple tweets are shared within a short span of time, each gets a divided attention. Thus, given the intermittent user attention intensity distribution, the problem is to find optimal tweet time strategies under competition with a given per-tweet cost.

Our model is also suitable in the context of finding strategic job submission times to cloud services, where the server is always ON, but its price fluctuates depending on the demand process. Thus, each player wants to avoid submitting jobs together with other players (to incur lower price), subject to its deadlines.

Special cases of this model have been studied in the recent past. Jeong et al. [3] and Kumar et al. [4] consider only one user without any competition, and find the exact optimal sampling distribution given the server activity distribution. In the concert queue problem [5], a server (ticket window) opens and closes at fixed times, and the problem for each customer is to decide when to arrive at the server queue amidst many competing customers so as to minimize its sum of waiting and service times. Explicit Nash equilibrium (NE) arrival distributions have been found for this problem by Jain et al. [5]. Another related model is that of distributed access in wireless (WiFi) networks, where multiple nodes contend for slots when they have packets to transmit, and transmissions are successful only if one node ends up transmitting. Tang et al. study the equilibrium question [6] for this setting when there is an exponential back-off mechanism for contention resolution.

Compared to prior work, the problem considered here covers a more general setting where a) there is uncertainty in terms of platform activity periods, b) there is repeated sensing/arrival (instead of single shot decision as in [5]), and c) multiple nodes are served at the same time from a shared resource.

Under strategic behavior from all competing players, without cooperation, a natural goal from a system design standpoint is to find stable operating points or equilibria from which no player would prefer to deviate. Accordingly, the
objective of this paper is find an equilibrium strategy for each competing player in this model, where the strategy for a player is comprised of the decisions to sample the system or not, at instants of time (where randomization is also allowed). Towards this end, the typical approach is to identify a per-node utility function, and try to find a NE for it, if it exists. This approach is analytically intractable for the problem at hand for most choices of natural utility functions.

To make analytical progress, we take an alternate route of considering that the players are running a natural distributed learning algorithm that adjusts its sensing behavior dynamically in response to its perceived payoff thus far, and show that it reaches equilibrium. Finding learning algorithms that achieve equilibrium is a relatively uncharted territory, with sporadic results available in literature. The most prominent of these is provided by Friedman and Shenker [7], who show that learning algorithms can achieve the NE in a two player zero-sum game. A similar result is unfortunately false for a three player game as shown by Daskalakis et al. [8]. For a brief survey, we refer the reader to the work of Shoham et al. [9].

In general, for congestion games (that are also potential games) where the congestion costs are additive, there is prior work showing that multiplicative weights learning algorithms converge to Nash equilibrium [10], [11]. For non-congestion games, learning algorithms achieving the Nash equilibrium has been briefly considered [12]–[14]. In particular, Altman and Shimkin [12] study a model where there are two servers (one employing processor sharing and other dedicated), and each user on arrival has to decide which server to join, given the current load on the servers, to minimize its expected service completion time; here, a learning algorithm is shown to achieve the Nash equilibrium. Learning algorithms have also been used to achieve Nash equilibrium in spectrum access games [13], [14].

An important difference of this work from prior work is that whereas learning algorithms are typically shown to achieve a NE of a static or one-shot game (e.g. in congestion games), in this paper, the considered game itself is inherently repeated, where each player has to make its decisions repeatedly.

In the model considered here, it is easy to argue that a deterministic sensing/arrival strategy cannot be an equilibrium solution. Therefore, we consider that each player employs a randomized strategy for sensing, i.e., in each slot it senses with a certain probability. The learning algorithm we propose (to update the sensing probability) learns the platform/server activity period frequency by computing how often the server was found active in previous sensing attempts, and implements a form of congestion control by exponentially decreasing its sensing probability with the number of other competing nodes encountered by it. Thus, given the per-sensing cost, the algorithm adapts to strike a balance between missing out on server activity periods and encountering large number of other nodes, when it senses the server. The learning algorithm does not require explicit information about the other players’ strategies, and only depends on its accumulated reward. It thus has a low ‘learning overhead’ compared to best response strategies, which require a player to know the exact strategies that all other players followed in the previous round.

The main result of this paper is to show that the proposed learning algorithm converges to a unique, non-trivial fixed point. We also explicitly characterize the fixed point, and show that it is in fact a NE for a sensing game in which each player’s utility function has a particular form. As one would expect, the per-player utility is increasing in its own sensing probability, and decreasing in the other nodes’ sensing probabilities, congestion and sensing costs. An additional outcome of our approach is ‘utility shaping’, in the sense of discovering a good/efficient choice of utility function; very often, there are no Nash equilibria for a particular/natural choice of utility function.

To prove our results, we first consider an expected version of the learning algorithm, where all random variables are replaced by their expected values. We then find the underlying utility function that the expected learning algorithm is trying to maximize for itself. Corresponding to this utility function, we identify a multiplayer game G, and show that there is a unique NE for this game, that is achieved by the best response strategy. We subsequently show that the updates of the expected learning algorithm converge to the best response actions for the game G. Finally to show the convergence of the actual learning algorithm to a fixed point, we show that its updates also converge to the best response actions for G.

Some of the proof techniques used in this paper are similar to those of Tang et al. [6]; however, the specific proofs themselves are entirely different. We would like to note that the proposed approach, as well as the analytical techniques presented in this paper, are likely to be applicable in many other related competition-based resource allocation models.

II. System Model and Preliminaries

Consider a time-slotted system, where a server alternates between two states {ON, OFF} following a two-state Markov chain. The duration of the ith ($i \geq 1$) ON and OFF period is denoted by C_i and D_i slots, respectively, where both C_i and D_i are assumed to be independent for $i \geq 1$, and are geometric random variables with parameters λ_c and λ_d, respectively. We partition the total slots into frames, where each frame consists of M consecutive time slots. Whenever convenient, we will use $k \geq 1$ to index frames, and $t \in \{1, 2, \ldots, M\}$ to index slots within a frame; the double-index notation (t, k) will thus denote the t-th time slot in frame k.

Consider N players in a system that attempt to access this server as often as possible. Player ℓ employs a probabilistic sensing strategy $\{p_{\ell}(k) : k \geq 1\}$, where $p_{\ell}(k)$ is the probability with which player ℓ senses the server in each slot within frame k, to check whether the server is in ON state. Each player incurs a cost c_s upon a sensing attempt.

If, on sensing, a player finds the server to be in the OFF state, then the player senses with the same probability in each slot until the end of that frame, and then updates the sensing probability in the next frame (the update rule is described by
1. The sensing vector employed by the player is the probability with which player \(k \) senses the AP throughout frame \(k \) (i.e., throughout the \(M \) slots that make up the frame), and let \(p(k) \equiv (p_{\ell}(k))_{1 \leq \ell \leq N} \) be the sensing vector employed by the \(N \) players. We assume the frame size \(M \) to be large, so that under a two-time scale decomposition, the sensing probability is updated slowly enough (i.e., before each frame starts), while at the same time allowing players to learn about, and adapt to, the underlying server ON-OFF process and other players’ strategies.

Let the server be in the ON state at time slot \(t \), where the server last came into the ON state at time slot \(t_0 \leq t \). A player is defined to be active at time slot \(t \) if it discovered the ON state in time period \([t_0, t]\) and its service is not finished by time slot \(t \). We denote by \(X(t) \in \{0, \ldots, N\} \) the number of players that are active at time slot \(t \). Let us tag a player \(\ell \in \Gamma \) for the remainder of the discussion. For a fixed frame \(k \), for the tagged player \(\ell \), let \(I_{\text{Sense}}(t) \) denote the indicator random variable that it senses at \((t, k)\), \(I_s(t) \) the indicator random variable that the server is in ON state at time slot \(t \) in frame \(k \), and \(I_i(t) \) the indicator random variable that the tagged player \(\ell \) is active at time slot \(t \). For the tagged player \(\ell \), at the end of the \(k^{\text{th}} \) frame, i.e., at slot \((M, k)\), define the random variable \(\hat{A}(k) \) to be the empirical average of the number of players that were active (including itself) for any slot in frame \(k \) in which player \(\ell \) was active in the system. Formally,

\[
\hat{A}(k) = \left\{ \begin{array}{ll}
\frac{\sum_{t=1}^{M} I_{\text{Sense}}(t) X(t)}{M} & \text{if } \sum_{t=1}^{M} I_i(t) > 0, \\
0 & \text{otherwise.}
\end{array} \right.
\]

We consider the following distributed sensing algorithm for updating the sensing probability at the start of the next frame \(k+1 \):

\[
p_{\ell}(k+1) = \kappa(k) \max \left\{ p_{\text{min}}, p_{\text{start}} \frac{1}{M} \sum_{t=1}^{M} (1 - I_s(t)) I_{\text{Sense}}(t) \right. \\
+ \left. p_{\ell}(k) \eta \exp^{-c_s} \exp^{-c_0 \hat{A}(k)} \frac{1}{M} \sum_{t=1}^{M} I_s(t) I_{\text{Sense}}(t) \right. \\
+ \left. p_{\ell}(k) \frac{1}{M} \sum_{t=1}^{M} (1 - I_{\text{Sense}}(t)) \right\} \wedge 1 + (1 - \kappa(k)) p_{\ell}(k),
\]

with \(x \wedge y = \min\{x, y\} \), and where \(p_{\text{min}} > 0 \) is a preset minimum sensing probability, \(c_0 \) and \(\eta \) are constants to be chosen later, and \(\kappa(k) \) is the update step-size.

The second argument of the maximum in the sensing algorithm (1) contains three complementary terms (only one of them is non-zero for slot \(t \) in frame \(k \)), where the first represents the empirical measure with which the AP was found OFF on sensing scaled by a fixed reset sensing probability \(p_{\text{start}} \), the second weights the number of competing players (congestion penalty) and the cost of sensing exponentially with the existing sensing probability, a constant \(\eta > 1 \), and the empirical measure with which the AP was found ON on sensing, and the third introduces a damping factor that resists the change in sensing probability if sensing was not performed often enough in that frame.

The basic idea behind the update (1) is to significantly lower the sensing probability when there are a large number of other active players found in the current frame. This directly
controls the congestion and incentivises sporadic sensing, and can be thought of as a backoff mechanism to implement a ‘soft processor-sharing’ routine.

On the other hand, if the number of other active players is low/moderate, and the empirical measure with which the AP was found ON on sensing (that tracks the connection rate λ_c of the server) is high, the sensing probability is increased to maximally utilise the opportunity provided by the server for service completions by each player. In a complementary sense, if the empirical measure with which the AP was found OFF on sensing is high, then the first term dominates and tries to lower the sensing probability. The sensing cost is also incorporated explicitly and weighed exponentially to limit the total sensing cost.

The following is the main result of the paper, showing that the update strategy (1), when followed by all N players, converges to a unique fixed point.

Theorem 1: If the following condition is satisfied
\[
(N - 1)c_0 p_{\text{start}} \eta_{\frac{\lambda_c}{(\lambda_c+\lambda_d)^2}} \left[\frac{1}{1 - (1 - \mu)}(1 - \lambda_c) \right] \leq 1, \tag{2}
\]
then the sensing update strategy (1) when followed by all N players converges to a unique fixed point, starting from any initial point. The unique fixed point also corresponds to a Nash equilibrium for a N player game, with individual utilities U_ℓ given by (6).

The left-hand side (LHS) of (2) is inherently a measure of congestion seen by each player; condition (2) specifies the congestion tolerance for the update algorithm that allows the convergence to a fixed point. Since c_0 and η are parameters under control, they can be chosen to satisfy (2) which determines the actual trajectory of the proposed update strategy (1).

For proving Theorem 1, we first consider an expected version of the update strategy (1) and interpret that each player is updating that version so as to maximize a utility function for itself. Using that utility function, we can be chosen to satisfy (2) which determines the actual trajectory of the proposed update strategy (1). We first study an expected or steady state version of (1).

Next, we consider the expected version of the update rule (1), and interpret that each player is updating that version so as to maximize some utility function for itself. Using that utility function, we can be chosen to satisfy (2) which determines the actual trajectory of the proposed update strategy (1).

B. A steady-state version of the update rule

Instead of directly analysing the trajectory of the update rule (1), we first study an expected or steady state version of (1). To this end, observe that within a frame of large enough size M, the player sensing probabilities $p \equiv (p_i)_{1 \leq i \leq N}$, $p_i > 0 \forall i$ are fixed. It follows that, within a frame, the $\{0,1\}^N$-valued stochastic process that tracks where player i, $i = 1, \ldots, N$ is active (state 1) or not (state 0) at time slot $t = 1, 2, \ldots, M$ is an irreducible and aperiodic discrete time Markov chain. By the ergodic theorem for discrete time Markov chains [15], the time average of the number of players seen by a tagged player ℓ during which it was active, converges with probability 1 to the steady state expected number of active players in the server conditioned on tagged player ℓ being active, as the number of time slots M tend to ∞. For a fixed p, let $A(p)$ be the expected number of active players seen by the active tagged player including itself under steady state. Next, in Lemma 2, we find an explicit expression for $A(p)$, whose proof can be found in Appendix A.

Lemma 2: For a fixed sensing probability vector $p > 0$, the expected number of players seen by the tagged player (including itself) in steady state satisfies $A(p) = 1 + \sum_{j \in \mathbb{Z} = \ell} \psi_j$, where ψ_j’s are given by
\[
\psi_j = \frac{p_j \lambda_c}{[1 - (1 - \mu)(1 - \lambda_c)] [\lambda_c + p_j(1 - \lambda_c)]}. \tag{3}
\]

Given $p(k)$ at the beginning of frame k, and a sufficiently large frame size M, we replace $A(k)$ by $A(p(k))$, and all other random variables by their expected values in (1), to obtain the following ‘expected’ update equation:
\[
p_{\ell}(k + 1) = \kappa(k) \max\{p_{\text{min}}, p_{\text{start}} \} \{
(1 - I_\ell((1, k))) I_{\text{Sense}}((1, k)) p(k) \}
+ p_{\ell}(k) \exp^{-\epsilon_{\ell}} \exp^{-c_{\ell}A(p(k))} \{1 - I_\ell(1, k) I_{\text{Sense}}((1, k)) p(k) \}
+ p_{\ell}(k) \{1 - I_{\text{Sense}}((1, k)) p(k) \} + (1 - \kappa(k)) p_{\ell}(k). \tag{4}
\]

Note that $E\{1 - I_\ell((1, k)) I_{\text{Sense}}((1, k)) p(k)\} = \frac{\lambda_c}{\lambda_c + \lambda_d} E\{I_{\text{Sense}}((1, k)) p(k)\}$, since the AP mode is independent of sensing given $p(k)$, and $E\{I_{\text{Sense}}((1, k)) p(k)\} = p_{\ell}(k)$. From Lemma 2, (4) reduces to $p_{\ell}(k + 1) = \kappa(k) \max[p_{\text{min}}, p_{\text{start}}] \frac{\lambda_d}{\lambda_c + \lambda_d} p_{\ell}(k) + \eta \exp^{-c_{\ell}} \frac{\lambda_c}{\lambda_c + \lambda_d} p_{\ell}(k)^2 \prod_{j \in \mathbb{Z} = \ell} \exp^{-c_{\ell} \psi_j}
+ p_{\ell}(k) \{1 - p_{\ell}(k)\} + (1 - \kappa(k)) p_{\ell}(k). \tag{5}
\]

C. Game-theoretic justification for the update rule and explicit utility structure

In this section, we adopt the view that each player updates its sensing strategy according to (5), so as to maximize some utility function for itself. Towards this end, consider a non-cooperative game $\mathcal{G} = \{N, p_{\ell}, U_\ell, \ell \in [1 : N]\}$ with N players, utility function U_ℓ and strategy p_{ℓ} for player ℓ. The game \mathcal{G} has a Nash equilibrium p^* if $U_\ell(p_{\ell^*}, \{p_{\ell^*}\}, \forall \ell \in [1 : N]$. Next, in Theorem 3, we identify the utility function that each player is trying to selfishly maximize via update strategy (5).

Theorem 3: The utility function for player ℓ that (5) attempts to maximize is given by $U_\ell(p) = U_\ell(p_{\ell}, p_{\ell^*}) = p_{\text{start}} \frac{\lambda_c}{\lambda_c + \lambda_d} p_{\ell}^2 + \frac{\lambda_c p_{\ell}}{2} \left(\frac{\eta \exp^{-c_{\ell}} \lambda_d}{\lambda_c + \lambda_d} \prod_{i \in \mathbb{Z} = \ell} \exp^{-c_{\ell} \psi_i} - 1 \right). \tag{6}
\]

Moreover, if
\[
p_{\text{start}} \frac{\lambda_c}{\lambda_c + \lambda_d} + \eta \exp^{-c_{\ell}} \frac{\lambda_d}{\lambda_c + \lambda_d} < 1, \tag{7}
\]
then there exists a valid non-zero NE p^* for G that satisfies,

$$p^*_i = \frac{p_{\text{start}} \sum_{j \neq i} \lambda_j \Delta_j}{1 - \eta \sum_{j \neq i} \lambda_j \Delta_j \prod_{\ell \in G \setminus i} e^{-c_\ell \psi\ell}}.$$

The proof is provided in Appendix B.

The selfish utility function $U_i(p_i, p_{-i})$ defined by (6) contains two terms that individually capture the natural benefit and cost for each user. The first term scales the sensing probability with the duty cycle (fraction of time the server is active) divided by the service cost, and so as to maximize the server activity periods. The second term corresponds to the congestion (via ψ_i) and the sensing cost, and the utility decreases with the increasing number of competing players and the sensing cost.

The best response strategy for player ℓ, assuming all other player strategies $p_{-\ell}$ are fixed, is given by:

$$p^*_{\ell} = \arg\max_{p_{\ell} \leq p_{\text{start}}} U_i(p_{\ell}, p_{-\ell}),$$

which for game G (from $\frac{\partial U}{\partial p_{\ell}} = 0$) evaluates to

$$p^*_{\ell} = \frac{p_{\text{start}} \sum_{j \neq \ell} \lambda_j \Delta_j}{1 - \eta \sum_{j \neq \ell} \lambda_j \Delta_j \prod_{\ell' \in G \setminus \ell} e^{-c_{\ell'} \psi_{\ell'}}}.$$

We next show, via a contraction mapping argument, that the Nash equilibrium for the game G is unique, and that the best response strategy (8) achieves it (Proof in Appendix C).

Theorem 4: If condition (2) holds, then the Nash equilibrium for the considered game G is unique, and the best response strategy (8) converges to the unique equilibrium.

Since the Nash equilibrium for the considered game G is unique, next, we use that to prove Theorem 1 by showing that the original update strategy (1) converges to the best response solution (8) for game G.

D. Proof of Theorem 1

We are now ready to work towards proving Theorem 1. The first step in this direction is to reinterpret the expected update equation (5) in terms of a gradient descent algorithm for maximizing U_i by player ℓ. Consider a gradient descent algorithm with step size κ for each player ℓ,

$$p_{\ell}(k + 1) = \max \left\{ p_{\text{min}}, p_{\ell}(k) + \kappa \frac{\partial U_i(p_{\ell}(k))}{\partial p_{\ell}} \right\},$$

that is identical to the expected update equation (5), which is no surprise because of the definition of utility U_i.

The first result we have with the gradient descent algorithm is its convergence to the NE depending on the step-size.

Lemma 5: Under the condition (7), with stepsize $\kappa \leq 1$, the iterates of the gradient descent algorithm (9) converge to the best response solution (8) for player ℓ, under fixed $p_{-\ell}$.

Thus, if all other players freeze their strategies $p_{-\ell}$, then player ℓ can reach the best response to $p_{-\ell}$ by running the gradient descent update equation (9) or the expected update strategy (5). Lemma 5 is applicable as long as each player’s strategy is updated sequentially, which requires time dilation (i.e., each player updates its strategy not in every frame but after multiple frames depending on the convergence time) for converging to the best response solution, which eventually converges to the global NE as shown in Theorem 4.

The proof of Lemma 5 is provided in Appendix D, where we show that the utility function is β-smooth with $\beta = 2$, using which the convergence is established.

Finally, we complete the proof of Theorem 1, by showing that the proposed update algorithm (1) converges to the best response strategy (8). Towards that end we make a correspondence between a stochastic sub-gradient algorithm and the update strategy (1) as follows.

E. A Stochastic Sub-Gradient interpretation of Update Strategy (1)

Let $v_{\ell}(k) = -p_{\ell}(k) + \frac{1}{M} \sum_{t=1}^{M} p_{\text{start}}(1 - 1_{S}(t)) 1_{\text{Sense}}(t)$

$$+ \eta p_{\ell}(k) \exp^{-c_{\ell}} \exp^{-c_{A}(t)} \frac{1}{M} \sum_{t=1}^{M} 1_{S}(t) 1_{\text{Sense}}(t) + \frac{p_{\ell}(k)}{M} \sum_{t=1}^{M} (1 - 1_{\text{Sense}}(t)).$$

From the definition of utility function $U_i(p_{\ell})$ (6), it is easy to check that $E\{v_{\ell}(p)\} = \frac{\partial U(p)}{\partial p}$, and the stochastic gradient descent algorithm counterpart of (9) is

$$p_{\ell}(k + 1) = \max \left\{ \tilde{p}_{\text{min}}, p_{\ell}(k) + \kappa v_{\ell}(k) \right\},$$

where \tilde{p}_{min} is a modified minimum sensing probability we will choose to satisfy technical condition required in Theorem 6.

Theorem 6: With fixed $p_{-\ell}$, for each player ℓ, the iterates of (11) converge to the best response solution (8) with probability 1 if the following conditions hold,

1. The step size $\kappa(k)$ satisfies $\kappa(k) \geq 0$, $\sum_{k=0}^{\infty} \kappa(k) = \infty$ and $\sum_{k=0}^{\infty} \kappa(k)^2 < \infty$.

2. $\tilde{p}_{\text{min}} = \frac{2}{\lambda + \Delta} \frac{1 - e^{-N \exp_{\text{min}}(k)}}{p_{\text{start}}} \geq p_{\text{min}}$, where ψ_{min} is the value of ψ_i at $p_i = p_{\text{min}} \forall i \in G$.

The proof is provided in Appendix E. With this, we have completed the proof of Theorem 1, since we have shown that the proposed sensing strategy (1) converges to the best response solution, which converges to a fixed point when the game G has a unique Nash equilibrium under condition (2).

The more important implication of Theorem 1 is that it shows the convergence of the proposed sensing strategy (1), even though it does not have precise knowledge of other nodes’ sensing probabilities $p_{-\ell}$, but only gets to observe the number of competing nodes $A(t)$ on each ON sensing. Thus, compared to the best response strategy, it has very low overhead of learning, and therefore suitable for practical applications.

In the next section, we consider the competitive WiFi sensing application of the considered model discussed in the
Introduction, and present some numerical results to illustrate the convergence of the proposed update strategies towards the best response solutions for a realistic setting discussed by Kim et al. [16].

III. NUMERICAL RESULTS

We carry out numerical experiments in the WiFi network testbed model presented in [16], where in an area of 2000 acres, there are 31 APs distributed uniformly randomly with corresponding density $\rho = \frac{31}{2000 \times 4046}$ APs/m². Total number of mobiles is $N = 25$, and each mobile node travels at a speed of $v = 30$ m/s in random orientation. The mobile is declared to be connected to an AP, if it is within $R = 250$ m from any AP. Under these settings, from [16], we have $\lambda_c = 2Rv\rho = 0.05745$ and $\lambda_d = \frac{v}{R} - 2Rv\rho = 0.06253$, and service rate $\mu = 5\lambda_c$. We let $p_{start} = 0.8$, then from (7), we need $\eta < 1.3$. For simulation, we consider $\eta = 0.8$. Moreover, to satisfy (2), we take $c_0 = 0.005$.

Under this setting, let \mathbf{p}^* be an equilibrium point. In Fig. 1, we plot the utility function for a tagged user ℓ, as a function of its sensing probability p_ℓ, when all other users are using the equilibrium strategy $\mathbf{p}^*_{-\ell}$. The optimal point on the utility function curve thus corresponds to the equilibrium point \mathbf{p}^*. We also plot the trajectories of utilities obtained by best response updates, the gradient descent updates, and the stochastic gradient updates (actual learning algorithm), and observe that all three updates converge to the equilibrium point.

Fig. 1. The utility function $U_\ell(p_\ell, \mathbf{p}_{-\ell})$ iterations of the three update algorithms. Note that Stochastic Gradient Descent is the proposed learning algorithm (1) requiring no information about other players’ strategies, while the other algorithms are based on knowing other players’ strategies and are thus practically unrealistic.

Corresponding to the setting in Fig. 1, we also plot the trajectories of the sensing probabilities for the three update strategies in Fig. 2 as a function of time, and observe that the stochastic gradient descent updates are the noisiest as expected.

Fig. 2. The trajectories of the three update algorithms over time.

IV. CONCLUSIONS

In this paper, we considered competition models when there is uncertainty about the underlying resource availability, and there is competition from other users that are trying to extract maximum share of the available resource. Rather than directly considering a particular utility function, we instead started with an intuitive distributed adaptive strategy and showed that it converges to the Nash equilibrium of a sensing game with reasonable utility function for the studied problem. The approach presented in this paper is expected to be useful for many other related settings, e.g., uplink scheduling with quality of service guarantees, device-to-device communications etc.

REFERENCES

Now, we uncondition $\mathbb{E}[n(t)]$ (to get $\mathbb{E}\{\mathbb{E}[n(t)|\mathcal{E}]\} = \mathbb{E}[\mathcal{A}(t)|\mathcal{P}(t)]$) with respect to event \mathcal{E} (the length of the ON period C that started at time 0 to be at least t), as follows.

$$
\mathbb{E}[\mathcal{A}(t)|\mathcal{P}(t)] = \sum_{\ell=0}^{\infty} \left(1 + \sum_{i \in \Gamma_{-\ell}} \phi_i(t)\right) Pr(C = t)
$$

$$
= \sum_{\ell=0}^{\infty} \left(1 + \sum_{i \in \Gamma_{-\ell}} \phi_i(t)\right) \lambda_c(1 - \lambda_c)^t,
$$

$$
= 1 + \sum_{i \in \Gamma_{-\ell}} \sum_{t=0}^{\infty} \sum_{\zeta=0}^{\infty} p_i(1 - p_i)^\zeta(1 - \mu)^{t-\zeta} \lambda_c(1 - \lambda_c)^t.
$$

Interchanging the order of summation indexed by t and ζ, we get

$$
\mathbb{E}[\mathcal{A}(t)|\mathcal{P}(t)] = 1 + \sum_{i \in \Gamma_{-\ell}} \psi_i(t),
$$

where

$$
\psi_i(t) = \frac{p_i \lambda_c}{1 - (1 - \mu)(1 - \lambda_c)} \frac{1}{[1 - (1 - \mu)(1 - \lambda_c)] [1 - (1 - p_i)(1 - \lambda_c)]}, \quad \forall i \in \Gamma_{-\ell}.
$$

APPENDIX B

PROOF OF THEOREM 3

In order to obtain a utility function corresponding to the expected update equation (5), consider the equilibrium point \mathbf{p}^* for (5), with $p_{min} < p_i^* < 1$, $\forall i$, for which the update equation will satisfy the following fixed point equation,

$$
p_i^* = p_{start} \frac{\lambda_d}{\lambda_c + \lambda_d} p_i^* + p_i^* (1 - p_i^*) + \eta \exp^{-c_\psi} \frac{\lambda_c}{\lambda_c + \lambda_d} (p_i^*)^2 \prod_{i \in \Gamma_{-\ell}} \exp^{-c_\psi \psi_i^*},
$$

(12)

where ψ^*_i is the function $\psi_i(p_i)$ evaluated when p_i^*. We need $0 \leq p_i^* \leq 1$, which is satisfied as long as (7) is satisfied.

Using (5), inherently each player is trying to maximize some utility function U_{ℓ}, and if at equilibrium (12) is satisfied, then one obvious choice of such utility function is that which satisfies $\frac{\partial U_{\ell}(\mathbf{p})}{\partial p_i} = 0$ at \mathbf{p}^*. Thus, by moving p_i^* to RHS in (12), we have

$$
\frac{\partial U_{\ell}(\mathbf{p})}{\partial p_i} = p_{start} \frac{\lambda_d}{\lambda_c + \lambda_d} p_i + p_i (1 - p_i) - p_i^* + \eta \exp^{-c_\psi} \frac{\lambda_c}{\lambda_c + \lambda_d} (p_i^*)^2 \prod_{i \in \Gamma_{-\ell}} \exp^{-c_\psi \psi_i^*},
$$

which gives the utility function (6) for player ℓ (unique up to a constant). The set $\{p_i|p_{min} \leq p_i \leq 1\}$ is a non-empty compact convex set on \mathbb{R}. Moreover, the utility function U_{ℓ} (6) is quasi-concave and continuous in p_i (for lack of space we omit the proof here). Thus, using the Proposition 20.3 in [17] there exists a Nash equilibrium, where (12) is satisfied with ψ_i replaced by ψ_i^*.

APPENDIX A

PROOF OF LEMMA 2

Let \mathcal{E} be the event that the server is in state ON at time slot t, and let the ongoing ON period at time slot t start at time slot 0 (we condition it appropriately later). Let s_i denote the service duration for player i, a geometric random variable with parameter μ. Then, player i is active at time slot t if it senses at time slot $\zeta \in [0, t]$, and its service duration $s_i \geq t - \zeta$.

Hence under event \mathcal{E}, the probability that player i is active at time t is

$$
\phi_i(t) = \sum_{\zeta=0}^{\infty} p_i(1 - p_i)^\zeta Pr(s_i \geq t - \zeta),
$$

and the expected number of active players in the system at time t are,

$$
\mathbb{E}\{n(t)|\mathcal{E}\} = 1 + \sum_{i \in \Gamma_{-\ell}} \phi_i(t),
$$

where 1 corresponds to player ℓ being active (conditioned tagged player) and $\sum_{i \in \Gamma_{-\ell}} \phi_i(t)$ to players other than ℓ.

APPENDIX C

PROOF OF THEOREM 4

We use the following Theorem from [18] to prove this result.

Theorem 7: Let M be a complete metric space with metric d, and $f : M \to M$ be a mapping. Assume that there exists a constant γ such that $0 \leq \gamma < 1$ and $d(f(v), f(u)) \leq \gamma d(v, u)$ for all $u, v \in M$; such an f is called a contraction. Then f has a unique fixed point; that is, there exists a unique $u^* \in M$ such that $f(u^*) = u^*$. Furthermore, the sequence $u(t + 1) = f(u(t))$ converges to this unique fixed point.

We will consider the best response strategy p_{t}^{fr} as the function f, and apply the above theorem with M being the Euclidean space \mathbb{R}^N endowed with a norm $\| \cdot \|_2$. Let $d(\cdot)$ be the distance metric induced by this norm. Let $\| \frac{df}{dx} \|$ be the Jacobian, then from properties of matrix norm [19], the following is true: $d(f(v), f(u)) = \| f(v) - f(u) \| \leq \| \frac{df}{dx} \| \| v - u \|$. For proving that f is a contraction mapping, it is sufficient to show that $\| \frac{df}{dx} \| < 1$ everywhere in x, and then invoke Theorem 7 to prove the claim.

Next, we work towards showing the infinity norm of $J_\ell (J_{tj} \triangleq \frac{\partial f_\ell}{\partial p_j})$ is less than which implies that $\| \frac{df}{dx} \| < 1$ for all players ℓ. By definition, J_{tj}

$$
= \begin{cases}
-\epsilon_0 p_{\text{start}} \eta \exp^{-c_0 \psi} \frac{\lambda_2 \lambda_\ell}{\lambda_\ell + \lambda_d} \left(\prod_{i \in \Gamma_\ell - t} e^{-c_0 \psi_i} \right) \sum_{k \in \Gamma_\ell - t} \frac{\partial \psi_k}{\partial p_j}, & \text{if } \ell = j \\
-\epsilon_0 p_{\text{start}} \eta \exp^{-c_0 \psi} \frac{\lambda_2 \lambda_\ell}{\lambda_\ell + \lambda_d} \left(\prod_{i \in \Gamma_\ell - t} e^{-c_0 \psi_i} \right) \partial \psi_j, & \text{otherwise,}
\end{cases}
$$

From the definition of $\{ \psi_k \}_{k \in \Gamma_{tj}}$ in (3), we have $\frac{\partial \psi_k}{\partial p_j} = 0 \ \forall k \in \Gamma_{tj}$. Therefore, $J_{tj} = 0$ for $\ell \neq j$. Next, we first bound the partial derivative $\frac{\partial \psi_j}{\partial p_j}$ by rewriting the definition of ψ_j from (3) as,

$$
\psi_j = \frac{h_1 p_j}{h_2 + h_3 p_j},
$$

where $h_1 = \lambda_\ell$, $h_2 = [1 - (1 - \mu)(1 - \lambda_\ell)] \lambda_\ell$, and $h_3 = (1 - \lambda_\ell)[1 - (1 - \mu)(1 - \lambda_\ell)]$. Taking the partial derivative of ψ_j w.r.t. p_j, we get

$$
\frac{\partial \psi_j}{\partial p_j} = \frac{h_1 h_2}{(h_2 + h_3 p_j)^2},
$$

which trivially imply the following bounds,

$$
\frac{h_1 h_2}{(h_2 + h_3)^2} \leq \frac{\partial \psi_j}{\partial p_j} \leq \frac{h_1}{h_2}.
$$

Using the expressions for h_1, we get the following bounds

$$
\frac{\lambda_\ell^2}{[1 - (1 - \mu)(1 - \lambda_\ell)]} \leq \frac{\partial \psi_j}{\partial p_j} \leq \frac{1}{[1 - (1 - \mu)(1 - \lambda_\ell)]}.
$$

We now upper bound $\| J \|_\infty = \max_{\ell} \sum_{j=1}^N |J_{tj}|$, as follows. Since $J_{tj, \ell} = 0$, and $J_{tj, j} < 0$, we have $\| J \|_\infty$

$$
= \max_{\ell} \left\{ \sum_{j \in \Gamma_{tj}} \frac{c_0 p_{\text{start}} \eta \exp^{-c_0 \psi} \lambda_\ell \lambda_d}{(\lambda_\ell + \lambda_d)^2} \left(\prod_{i \in \Gamma_{tj}} e^{-c_0 \psi_i} \right) \frac{\partial \psi_j}{\partial p_j} \right\},
$$

$$
\leq \max_{\ell} \left\{ \sum_{j \in \Gamma_{tj}} c_0 p_{\text{start}} \eta \exp^{-c_0 \psi} \frac{\lambda_\ell \lambda_d}{(\lambda_\ell + \lambda_d)^2} \left(\prod_{i \in \Gamma_{tj}} e^{-c_0 \psi_i} \right) \frac{\partial \psi_j}{\partial p_j} \right\},
$$

$$
\leq \max_{\ell} \left\{ \frac{c_0 p_{\text{start}} \eta \exp^{-c_0 \psi} \lambda_\ell \lambda_d}{(\lambda_\ell + \lambda_d)^2} \left(\prod_{i \in \Gamma_{tj}} e^{-c_0 \psi_i} \right) \frac{\partial \psi_j}{\partial p_j} \right\},
$$

$$
\leq \max_{\ell} \left\{ \frac{(N - 1)c_0 p_{\text{start}} \eta \exp^{-c_0 \psi} \lambda_\ell \lambda_d}{(\lambda_\ell + \lambda_d)^2} \left(\prod_{i \in \Gamma_{tj}} e^{-c_0 \psi_i} \right) \frac{\partial \psi_j}{\partial p_j} \right\},
$$

$$
\leq \max_{\ell} \left\{ \frac{(N - 1)c_0 p_{\text{start}} \eta \exp^{-c_0 \psi} \lambda_\ell \lambda_d}{(\lambda_\ell + \lambda_d)^2} \left[1 - \exp^{-c_0 \psi} \frac{\lambda_\ell \lambda_d}{(\lambda_\ell + \lambda_d)^2} \right]^2 \left(\prod_{i \in \Gamma_{tj}} e^{-c_0 \psi_i} \right) \frac{\partial \psi_j}{\partial p_j} \right\},
$$

$$
\leq \max_{\ell} \left\{ \frac{1}{1 - (1 - \mu)(1 - \lambda_\ell)} \right\}.
$$

(14)

where (a) follows since $\prod_{i \in \Gamma_{tj}} e^{-c_0 \psi_i} \leq 1$, (b) follows by replacing the outer sum by Γ_{tj}, (c) follows since $|\Gamma_{tj}| = N - 1$, and in (d) we use the upper bound (13).

Note that the argument of the max in (14) does not depend on ℓ, hence to make $\| J \|_\infty \leq 1$ it is sufficient for the argument of the max to be less than 1, i.e.

$$
(N - 1)c_0 p_{\text{start}} \eta \exp^{-c_0 \psi} \frac{\lambda_\ell \lambda_d}{(\lambda_\ell + \lambda_d)^2} \left[1 - \exp^{-c_0 \psi} \frac{\lambda_\ell \lambda_d}{(\lambda_\ell + \lambda_d)^2} \right]^2 \leq 1.
$$

This inequality is satisfied by choosing appropriately the values of parameters η and c_0 as specified in condition (2).

APPENDIX D

PROOF OF LEMMA 5

Definition 8: A function $f : \mathbb{R} \to \mathbb{R}$ is Lipschitz continuous with constant $L < \infty$ if $|f(x) - f(y)| \leq L \| x - y \| \ \forall x, y$. Moreover, a function f whose derivative is Lipschitz continuous with constant $\beta < \infty$, i.e., $|\nabla f(x) - \nabla f(y)| \leq \beta \| x - y \| \ \forall x, y$, is called a β-smooth function.

We will use the following Theorem to prove Lemma 5.

Theorem 9: [20, §1.2.3] Let f be a β smooth function and $f^* = \min f(x) > -\infty$. Then the gradient descent algorithm with a constant step size $\kappa < \frac{2}{\beta}$ converges to a stationary point i.e., the set $\{ x : \nabla f(x) = 0 \}$.

For fixed p_{ℓ}, let player ℓ update the strategy using the gradient descent algorithm, and let $f \equiv U_\ell$. For player ℓ, the gradient expression is given by,

$$
\nabla f = \frac{\partial U_\ell}{\partial p_\ell} = p_{\text{start}} \frac{\lambda_\ell}{\lambda_\ell + \lambda_d} p \lambda_\ell + (p - p) \frac{\lambda_\ell}{\lambda_\ell + \lambda_d} p \lambda_\ell + \frac{\eta \exp^{-c_0 \psi} \lambda_\ell \lambda_d}{\lambda_\ell + \lambda_d} \prod_{i \in \Gamma_{tj}} e^{-c_0 \psi_i}.
$$

(15)
Now we check the β-smoothness condition for f, and find a bound on the constant as follows. For that purpose,

$$
\left| \frac{\partial U_t}{\partial p_t} \right|_{p_t=x} - \left| \frac{\partial U_t}{\partial p_t} \right|_{p_t=y} = \left| \frac{\lambda_c}{\lambda_c + \lambda_d} (x-y) - x^2 + y^2 \right| + \eta \exp^{-c_\lambda} \left| \frac{\lambda_d}{\lambda_c + \lambda_d} (x^2 - y^2) \prod_{i \in \Gamma_{t-\ell}} e^{-c_\lambda \psi_i} \right|
$$

where (a) follows since $|pq| \leq |p||q|$ $\forall p, q \in \mathbb{R}$, (b) involves rearrangement of terms, and (c) follows since $|x-y| \leq \|(x_p, p_{-\ell}) - (y, p_{-\ell})\|$, where $(x, p_{-\ell})$ is the N-length vector. If (7) holds, then each of the two terms of (7) are < 1, namely:

$$0 < \eta \exp^{-c_\lambda} \frac{\lambda_d}{\lambda_c + \lambda_d} < 1$$

and

$$0 < \frac{\lambda_d}{\lambda_c + \lambda_d} < 1.$$