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Abstract

Pure exploration in multi-armed bandits has emerged as an important framework for
modeling decision making and search under uncertainty. In modern applications
however, one is often faced with a tremendously large number of options and
even obtaining one observation per option may be too costly rendering traditional
pure exploration algorithms ineffective. Fortunately, one often has access to
similarity relationships amongst the options that can be leveraged. In this paper,
we consider the pure exploration problem in stochastic multi-armed bandits where
the similarities between the arms is captured by a graph and the rewards may be
represented as a smooth signal on this graph. In particular, we consider the problem
of finding the arm with the maximum reward (i.e., the maximizing problem) or one
that has sufficiently high reward (i.e., the satisficing problem) under this model.
We propose novel algorithms GRUB (GRaph based UcB) and ζ-GRUB for these
problems and provide theoretical characterization of their performance which
specifically elicits the benefit of the graph side information. We also prove a lower
bound on the data requirement that shows a large class of problems where these
algorithms are near-optimal. We complement our theory with experimental results
that show the benefit of capitalizing on such side information.

1 Introduction

The multi-armed bandit has emerged as an important paradigm for modeling sequential decision
making and learning under uncertainty. Practical applications include design policies for sequential
experiments [44], combinatorial online leaning tasks [9], collaborative learning on social media
networks [30, 4], latency reduction in cloud systems [23] and many others [8, 59, 50, 24]. In the
traditional multi-armed bandit problem, the goal of the agent is to sequentially choose among a set
of actions or arms to maximize a desired performance criterion or reward. This objective demands
a delicate tradeoff between exploration (of new arms) and exploitation (of promising arms). An
important variant of the reward maximization problem is the identification of arms with the highest
(or near-highest) expected reward. This best arm identification [41, 13] problem, which is one
of pure exploration, has a wide range of important applications like identifying and testing drugs
to treat infectious diseases like COVID-19, finding relevant users to run targeted ad campaigns,
hyperparameter optimization in neural networks and recommendation systems. The broad range of
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applications of this paradigm is unsurprising given its ability to essentially model any optimization
problem of black-box functions on discrete (or discretizable) domains with noisy observations.

While pure exploration problems in bandits show considerable promise, there are significant hurdles
to their practical usage. In modern applications, one is often faced with a tremendously large number
of options (sometimes in the order of hundreds of millions) that need to be considered for decision
making. In such cases, playing (i.e., obtaining a random sample from) each bandit arm even once
could be intractable. This renders traditional approaches to pure exploration ineffective. Fortunately,
in several applications, the arms and their rewards are related to each other and information about
the reward of one arm may be deduced from plays of similar arms. In this paper, we consider the
pure exploration problem in stochastic multi-armed bandits where the similarities between arms is
captured by a graph and the rewards may be represented as a smooth signal on this graph. Such
graph side information is available in a wide range of applications: search and recommendation
systems have graphs that capture similarities between items [17, 43, 53, 11]; drugs, molecules and
their interactions can be represented on a graph [19]; targeted advertising considers users connected
to each other in a social network [20], and hyperparameters for training neural network are often
inter-related [57]. It is worth noting that such graphs are sometimes intrinsic to the problem (e.g.,
spatial coordinates or social/computer networks), or may be inferred based on a similarity metrics
defined on arm features; a recent line of work considers constructing such graphs to enable more
effective learning [see e.g., 58, 31].

Our Contributions: We consider the pure exploration in multi-arm bandits problem when a graph
that captures similarities between the arms is available. In particular, we consider the problem of
finding the arm with the maximum reward (i.e., the maximizing problem) or one that has sufficiently
high reward (i.e., the satisficing problem2) under the assumption that arm rewards are smooth with
respect to a known graph. Our main contributions may be summarized as follows:

(a) We devise a novel algorithm GRUB for the best arm identification problem (i.e., the maximizing
problem) that specifically exploits the homophily (strong connections imply similar average rewards)
on the graph (Section 3).
(b) We provide a theoretical characterization of the performance of GRUB. To this end, we define a
novel measure I that we dub the “influence factor” which depends on the resistance distance of the
underlying graph. This measure captures the benefit of the graph side information and plays a central
role in the analysis of GRUB. In the traditional (graph-free) best arm identification problem, the
sample complexity is know to scale as

∑n
i=1

1
∆2
i

, where ∆i is the gap between the expected rewards
of the best arm and arm i. On the other hand, we show that GRUB roughly has a complexity that scales
like

∑
i∈H

1
∆2
i

samples where the set H is a set dependent on the influence factor, which contains
arms which are hard to distinguish from optimal arm. For a broad range of problems |H| � n,
yielding significant improvement over traditional best arm identification algorithms (Section 4).
(c) In Section 5, we provide lower bounds on the minimum number of samples required for iden-
tification of the optimal arm when a graph encoding arm similarities is available. This shows the
near-optimality of GRUB for an important class of representative problems.
(d) In many real world scenarios, the aim of finding the absolute best arm can often be too costly
or even intractable. In these situations, it may be more appropriate to solve the satisficing problem,
where the algorithm returns an arm that is good enough. We propose a variant of GRUB, dubbed
ζ-GRUB for this important setting in Section 6
(e) Finally, in Section 7, we complement our theoretical results with an empirical evaluation of our
algorithms. We further provide algorithmic improvements to GRUB and discuss novel sampling
policies for best arm identification in the presence of graph information.

1.1 Related Work

The textbook [32] is an excellent resource for the general problem of multi-armed bandits. The
pure exploration variant of the bandit problem is more recent, and has also received considerable
attention in the literature [6, 7, 15, 14, 4, 21]. These lines of work treat the bandit arms or actions as
independent entities and playing a particular arm yields no information about any other arm. This
leads to great difficulty in scaling such methods, since in the problem setups with large number of

2named after Herbert Simon’s celebrated alternative model of decision making [48]
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arms, attempting to play all arms is not practical. We resolve this precise roadblock by introducing a
convenient way of of appending graph side information into the mix which provably accelerates the
process of sub-optimal arm elimination (potentially without playing it even once!)

A recent line of work [35, 32, 18, 56, 16, 39] has proposed the leveraging of structural side-
information for the multi-armed bandit problem for regret minimization. Such topology-based bandit
methods work under the assumption that pulling an arm reveals information about other, correlated
arms [18, 47], which help in developing better regret methods. Similarly, spectral bandits [29, 56, 51]
assume user features are modelled as signals defined on an underlying graph, and use this to assist in
learning. The works [3] and [54] consider similar graph information models, albiet at a degraded
level. The authors in [33] use the graphs to improve the regret bounds in a thresholding bandit setting.
Work revolving around spectral bandits utilize the spectrum of the graph laplacian. In contrast, we
focus on the combinatorial properties of the graphs to devise algorithms and analyse them. Another
line of work [12, 52, 36, 37] considers search problems on graphs under a different model and there
is an opportunity for future work to combine these techniques.

Most of the aforementioned works focus on regret minimization in the presence of graph information.
The problem of pure exploration with similarity graphs has received far less attention. The authors
in [29] were the first to attempt at filling this gap for the spectral bandit setting. They provide an
information-theoretic lower bound and a gradient-based algorithm to estimate this lower bound to
sample the arms. The authors provide performance guarantees for the algorithm, but these results
only indirectly capture the benefit brought by the graph; our results on the other hand are based on a
novel complexity measure that explicitly elicits the benefit of having the graph side information.

Note that, similarity graph information considered in this work is fundamentally different from
linear rewards assumption in contextual/linear bandits. In the linear bandits problem, the reward
behavior is assumed to be low dimensional and this is crucial for the improved regret bounds and
sample complexity guarantees [32, 49]. In the current work we do not make any assumptions on low
dimensionality of the rewards but still show improvements in sample complexity provided a good
arm-similarity graph is available. We show a toy example in Appendix H where a low dimensional
linear bandit cannot be competitive with the corresponding graph-bandit setting.

2 Problem Setup and Notation

We consider an n-armed bandit problem with the set of arms given by [n] , {1, 2, 3, . . . , n}. Each
arm i ∈ [n] is associated with a σ-sub-Gaussian distribution νi. That is, EX∼νi [exp (s(X − µi))] ≤
exp

(
σ2s2

2

)
∀s ∈ R, where µi = Eνi [X] is said to be the (expected or mean) reward associated to

arm i. We will let µµµ ∈ Rn denote the vector of all the arm rewards. A “play” of an arm i is simply
an observation of an independent sample from νi; this can be thought of as a noisy observation of
the corresponding mean µi. The goal of the best-arm identification problem is to identify, from such
noisy samples, the arm a∗ , arg maxi∈[n] µi that has the maximum expected reward, denoted by µ∗.
For each arm i ∈ [n], we will let ∆i , µ∗ − µi denote the sub-optimality of the arm.

As discussed in Section 1, our goal is to consider the best-arm identification where one has additional
access to information about the similarity of the arms under consideration. In particular, we model this
side information as a weighted undirected graph G = (VG, EG, AG) where the vertex set, VG = [n],
is identified with the set of arms, the edge set EG ⊆

(
[n]
2

)
, and adjacency matrix AG ∈ Rn×n

describes the weights of the edges E between the arms which captures the similarity in means
of connected arms; the higher the weight, the more similar the rewards from the corresponding
arms. We will let LG = DG − AG denote the combinatorial Laplacian3 of the graph [10], where
DG = diag(AG × 1n) is a diagonal matrix containing the weighted degrees of the vertices. We
will suppress the dependence on G when the context is clear. Subsequently, we show that if one
has access to this graph and the vector of rewards µµµ is smooth with respect to the graph (that is,
highly similar arms have highly similar rewards), then one can solve the pure exploration problem
extremely efficiently. We will capture the degree of smoothness of µµµ with respect to the graph using

3All our results continue to hold if this is replaced with the normalized, random walk, or generalized
Laplacian.
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the following seminorm4:

‖µµµ‖2G , 〈µµµ,LGµµµ〉 =
∑

{i,j}∈EG

Aij(µi − µj)2. (1)

The second equality above can be verified by a straightforward calculation. Also, notice that ‖µµµ‖G
being small implies µi ≈ µj for (i, j) ∈ E. In such scenario we say that the mean vector µµµ is smooth
over graph G. This observation has inspired the use of the Laplacian in several lines of work to
enforce smoothness on the vertex-valued functions [2, 51, 60, 33]. For ε > 0, we say that arms
(rewards) are ε-smooth with respect to a graph G if ‖µµµ‖G ≤ ε.

Let C(G) ⊂ 2[n] denote the set of all connected components and let k(G) , |C(G)| denote the number
of connected components of the graph G. For a vertex i ∈ [n], we will let Ci(G) ∈ C(G) denote the
connected component that contains i. When the context is clear we sometimes let Ci(G) also refer
all the nodes in the connected component. We say a graph G = ([n], E) has k-isolated cliques if it
can be divided into fully connected sub-graphs Gi = (Vi, Ei) such that Vi ⊆ [n], Ei =

(
Vi
2

)
for all

i ∈ [k], Vi ∩ Vj = ∅, Ei ∩ Ej = ∅ for all i, j ∈ [k], and
⋃k
i=1 Vi = [n],

⋃k
i=1Ei = E. Notice that

we only have one clique if G is fully connected.

To solve the best-arm identification problem, we need a sampling policy to sequentially and interac-
tively select the next arm to play, and a stopping criterion. For any time t ∈ N, the sampling policy
πππt = {πs}s≤t is a function that maps t to an arm in [n] given the history of observations up to time
t− 1. With slight abuse of notation, we will let πt denote the arm chosen by an agent at time t. Let
rt,πt denote the random reward observed at time t from arm πt. We use ti(πππt) (referred as ti for
simplicity) to denote the number of times arm i is played under the sampling policy πππt. In this paper
we tackle the following problems:

P1 (Best arm identification): Given n arms and an arbitrary graphG capturing similarity between
the arms, can we design a policy πππT that exploits the similarity to find the best arm efficiently?

P2 (ζ-best arm identification): Under the setting in P1, can we design a similarity exploiting
policy πππT so as to find an arm belonging to the set B(ζ) , {i ∈ [n] : |µi − µa∗ | ≤ ζ} efficiently?

3 The GRUB Algorithm

We now introduce GRUB (GRaph based Upper Confidence Bound), a novel but natural algorithm
for best arm identification in the presence of graph side information. We begin with an intuitive
description of how GRUB incorporates the graph side information into an upper confidence bound
(UCB) strategy. Most UCB algorithms [32, 51] compute the estimates of mean and variance, and
use these to eliminate arms that have been deduced to be sub-optima. The key idea behind GRUB
is that the arm similarity information allows us to create high-quality estimates of mean rewards
and confidence intervals for arms that have not been (sufficiently) sampled yet. In what follows, we
describe the building blocks of GRUB.

3.1 Leveraging Graph Side Information

We introduce two key ideas that lie at the heart of the GRUB algorithm. First, at each step, GRUB
computes a regularized estimate of the means of all the arms; the regularization based on the graph
Laplacian essentially promotes the smoothness of the mean vector on the given graph. This allows
the algorithm to estimate means of arms it has never sampled. To do this, at any given time step T ,
the algorithm solves the following Laplacian-regularized least-squares optimization program:

µ̂µµT = arg min
µµµ∈Rn

{ [
T∑
t=1

(rt,πt − µπt)2

]
+ ρ〈µµµ,LGµµµ〉

}
, (2)

4LG is not positive definite, and can be verified to have as many zero eigenvalues as the number of connected
components in G

4



where ρ > 0 is a tunable parameter. Equation (2) admits a closed form solution of the form

µ̂µµT =

(
T∑
t=1

eπte
>
πt + ρLG

)−1( T∑
t=1

eπtrt,πt

)
,

provided the matrix VT ,
∑T
t=1 eπte

>
πt + ρLG is invertible; ei denotes the i-th standard basis vector

for the Euclidean space Rn. In Appendix B we show that invertibility holds if and only if the sampling
policy yields at least one sample per connected component of G. This is a rather mild condition
that we arrange for explicitly in our algorithm, given that we know the graph G. In what follows we
assume that every connected component of graph G is sampled at least once. This regularized mean
estimation procedure yields an estimate of the mean that is both in agreement with observations and
smooth on the graph – thereby allowing information sharing among similar arms.

The second key idea of our algorithm is the utilization of the graph G in tracking the confidence
bounds of all the arms simultaneously. Intuitively, for identifying the best arm, we must be reasonably
certain about the sub-optimality of the other arms. This in turn would require the algorithm to track a
high-probability confidence bound on the means of all the arms. In the traditional (graph-free) best
arm identification problem, the confidence interval of an arm’s mean estimate depends on the number
of times the arm has been played. Requiring multiple plays of all suboptimal arms for obtaining high
confidence bounds is potentially disastrous when the number of arms is very large. In our setup, we
show that the knowledge of the similarity graph greatly improves this situation. In particular, we
show that a play of any arm not only tightens its own confidence interval, but also has an impact on
the confidence intervals of all connected arms. To quantify the benefit of graph information for the
confidence bounds, we will define a novel quantity for each arm – the effective number of plays.
Definition 3.1 (Effective Number of Plays). Let ρ > 0 and {ti}ni=1 denote the number of plays of
each of the n arms when a sampling policy πππT is employed for T time steps. Suppose that for each
connected component C ∈ C(G), there is at least one arm iC ∈ C such that tiC > 0. Then the

effective number of plays for each arm i ∈ [n] is defined as teff,i ,
[
(NT + ρLG)

−1
]−1

ii
, where NT

is a diagonal matrix of {ti}ni=1, and LG denotes the Laplacian of the given graph G.

Effective number of plays teff,i for any arm i is influenced by two factors: (a) the number of samples
of arm i itself, and (b) the number of samples of any arm in the connected component j ∈ C(i), j 6= i.
It can be shown that for any arm i, teff,i depends on the number of connections of node i in graph G
and its value increases as the connectivity of the node increases. The choice of the terminology for
this quantity is justified by the following lemma, which provides a high confidence bound for the
mean estimate of each arm .
Lemma 3.2 (Concentration inequality). For any T > k(G), the following holds with probability at
least 1− δ:

|µ̂iT − µi| ≤

√
1

teff,i

(
2σ

√
14 log

(
2wi(πππT )

δ

)
+ ρ‖µµµ‖G

)
, ∀i ∈ [n] (3)

where wi(πππT ) = a0nt
2
eff,i for any constant a0 > 0, µ̂iT is the i-th coordinate of the estimate from (2)

Notice that the effective number of plays has a similar role as the number of plays in traditional pure
exploration algorithms [13]. Indeed, in the absence of graph information, teff,i reduces to ti, the
total number of plays of individual arms. Lemma 3.2 recovers high confidence bounds for standard
best-arm identification problem [13]. It should be noted that while our work is the first to identify
this interpretable quantity explicitly, the result of Lemma 3.2 in other forms has appeared before in
the literature [1, 51, 56].

We introduce our algorithm GRUB for best arm identification when the arms can be approximately
cast as nodes on a graph. GRUB uses insights from graph-based mean estimation (2) and upper
confidence bound estimation (3) for its elimination policies to search for the optimal arm.

GRUB accepts as input a graph G on n arms (and its Laplacian LG), a regularization parameter
ρ > 0, a smoothness parameter ε > 0, and an error tolerance parameter δ ∈ (0, 1). It is composed of
the following major blocks.
Initialization: First, GRUB identifies the clusters in the G using a Cluster-Identification
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routine. Any algorithm that can efficiently partition a graph can be used here, e.g METIS [25]. GRUB
then samples one arm from each cluster. This ensures VT � 0, which enables GRUB to estimate µ̂µµT
using the closed form solution of eq. (2). A great advantage of GRUB is that the initialization phase
only requires steps equal to the number of disconnected components in the graph. This is in direct
contrast with traditional best arm identification algorithms, which require atleast one sample from
every arm initially.
Sampling policy: At each round, GRUB obtains a sample from the arm returned by the routine
Sampling-Policy, which cyclically samples arms from different clusters while ensuring that no
arm is resampled before all arms in consideration have the same number of samples. This is distinct
from standard cyclic sampling policies that is traditionally used for best arm identification [13],
but any of them may be modified readily to provide a cluster-aware sampling policy for GRUB. In
our experiments, we show that replacing cyclic sampling with more statistics- and structure-aware
sampling greatly improves performance; a theoretical analysis of these is a promising avenue for
future work. One of the major advantage of GRUB is the lite nature of the computation. Every loop
just requires a rank-1 inverse update which can be performed very efficiently and it does not need any
subroutines, unlike [29]
Bad arm elimination : At any time t, let A be the set of all arms in consideration for being optimal.
Using the uncertainty bound from (3), GRUB uses the following criteria for sub-optimal arm elimi-

nation. At each iteration, GRUB identifies an arm amax ∈ A, amax = arg max
i∈A

[
µ̂it − βi(t)

√
t−1

eff,i

]
,

where βi(t) =

(
2σ

√
14 log

(
2na0t2eff,i

δ

)
+ ρε

)
, with the highest lower bound on its mean esti-

mate.Following this, GRUB removes arms from the set A according to the following elimination
policy,

A←
{
a ∈ A | µ̂amax

t − µ̂at ≤ βa(t)
√
t−1

eff,a + βamax(t)
√
t−1

eff,amax

}
. (4)

Note that GRUB does not require any optimization innerloop as in [29]. This potentially provides
GRUB with a significant computation advantage, especially when the dimensionality of the problem
is very large. The pseudocode for GRUB can be found in Appendix E.

Next, we derive performance guarantees on the sample complexity for GRUB to return the best arm
with high probability.

4 Theoretical Analysis of GRUB

In this section we provide a formal statement of the sample complexity of GRUB. To do this, we
first introduce a novel quantity we call influence factor. The influence factor of an arm is derived
from resistance distance, a classical graph theoretic concept. This adds to the interpretability and
understanding of the instances where using graph side information might be of tremendous use to the
application. The usage of graph through the influence factor allows us to identify arms that can be
eliminated quickly from consideration.

4.1 Resistance Distance and Influence Factor

We first recall the definition of resistance distance in a graph.
Definition 4.1 (Resistance Distance). [5] For any graph G with n nodes, given a constant δ > 0, the
resistance distance rδ,G(i, j) between two nodes i, j is defined as,

rδ,G(i, j) = Rii +Rjj −Rij −Rji, (5)

where R ,
(
LG + δ11T

)†
; † denotes the Moore-Penrose inverse, LG is the Laplacian of graph G,

and 1 ∈ Rn is the vector of all 1’s.

When the context is clear we denote the resistance distance simply as rG(·, ·). The terminology
comes from circuit theory: Suppose that an graph G = ([n], E) is thought of as a resistor network on
the nodes [n] where each edge {i, j} has a unit resistance. Then, the effective resistance between
two nodes i and j is precisely the resistance distance r(i, j). It can be shown in general that nodes
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that are close by or connected by several paths have a small resistance distance. Given its ability to
capture closeness of nodes in graph, the resistance distance has found a broad range of applications
and has been the subject of much study; see e.g., [28, 5, 55].

Using the notion of resistance distance, we define the influence factor I(·, G) of a vertex below.
This novel measure quantifies the impact of the graph on the parameter estimation of arm j, and in
particular, allows us to use the combinatorial properties of the graph and the arm means to classify
arms into two sets: competitive and non-competitive; the definition of these sets follows right after.
As our theory will show, the competitive arms are sampled as though we were in the traditional
graph-free setting; on the other hand, non-competitive arms are eliminated rapidly, often with zero
plays! Indeed, the smoother the reward vector is with respect to the graph, the fewer competitive
arms there are – it is this phenomenon that is captured using the influence factor.
Definition 4.2 (Influence Factor). Let G be a graph on the vertex set [n]. For each j ∈ [n], define
influence factor I(j,G) as:

I(j,G) =

{
min

i∈Cj(G),i6=j
{rG(i, j)−1}, if |Cj(G)| > 1,

0, otherwise .
(6)

Here, rG(i, j) is the resistance distance between arm i and j in G as in Definition 4.1.
Definition 4.3 (Competitive and Non-Competitive Arms). Fix µµµ ∈ Rn, graph D, regularization
parameter ρ, confidence parameter δ, and smoothness parameter ε. We define HD to be the set of
competitive arms and ND to be the set of non-competitive arms as follows:

HD =

{
j ∈ [n]

∣∣∆i ≤ 2

√
2

ρI(i,D)

(
2σ

√
14 log

(
2a0nρ2I(i,D)2

δ

)
+ ρε

)}
(7)

and ND , [n] \ HD.

As the name suggests, the arms inH are close to the optimal arm a∗ in mean (competitive compared
to the optimal arm a∗) and requires several plays before they can be discarded, as shown in the
theorem below. Note from the above definition that an arm is more likely to be part of this set if its
mean is high (i.e., ∆i is low) and its influence factor is low. Similarly, the non-competitive set is
composed of arms whose means are not competitive with the optimal arm.

Armed with these definitions, we are now ready to state our main theorem that characterizes the
performance of GRUB.

4.2 Sampling policy performance

Cyclic sampling policies have been traditionally used in multi-armed bandit problems for best-arm
identification [13]. The sample complexity bound for GRUB with cyclic sampling is as follows:
Theorem 4.4 (GRUB Sample Complexity). Consider n-armed bandit problem with mean vector
µµµ ∈ Rn. Let G = (V,E) be the similarity graph with the vertex set V = [n] and edge set E, let G be
the set of subgraphs of G , and further suppose that µµµ is ε-smooth i.e., ‖µµµ‖G ≤ ε. Define

Tsufficient , arg min
D∈G

∑
C∈CD

 ∑
i∈C∩HD
i 6=1

1

∆2
i

[
c1 log

c2
δ∆i

+
ρε

2

]
+ max
i∈C∩ND

2

∆2
i

[
c1 log

c2
δ∆i

+
ρε

2

] ,
where ∆i = µ∗ − µi for all suboptimal arms,HD and ND are as in Definition 4.3, CD is the set of
connected components of a given graph D and c1, c2 are constants independent of system parameters.
Then, with probability at least 1− δ, GRUB: (a) terminates in no more than Tsufficient rounds, and (b)
returns the best arm a∗ = arg maxi µi.
Remark 4.5. The required number of samples for successful elimination of suboptimal arms, and
therefore the successful identification of the best arm, can be split into two categories based on the sets
defined in Definition 4.3. Each sub-optimal highly competitive arm j ∈ H requiresO(1/∆2

j ) samples,
which is comparable to the classical (graph-free) best-arm identification problem. Additionally, the
non-competitive arms N can be eliminated without being played, depending on the influence factor:

7



one round of the cyclic sampling suffices to eliminate these arms (even if they are never played!). We
refer the reader to Appendix E for a more detailed discussion. Indeed, the smaller |H| is, the more
the graph side information benefits GRUBand vice-versa.
Remark 4.6. Note that Tsufficient in Theorem 4.4 involves the minimum over all subgraphs. As we
show in Lemma I.8 in the appendix, I can actually increase if one restricts their attention to certain
subgraphs of G; this in turn increases the size of N and decreases the size of H, hence, giving a
tighter upper bound on the performance of the algorithm. GRUB automatically adapts to the best
subgraph to maximize the influence factor I(·, ·) to obtain the best possible sample complexity and
this is reflected in the statement of Theorem 4.4.

The complete proof of Theorem 4.4 can be found in Appendix E, where we also provide more insights
on the behavior of the confidence bound as a function of the number of samples acquired. These
results may be of independent interest to the reader.

5 Lower Bounds

Let us consider an n-armed bandit setup with arm indices [1, . . . , n]. Let µ∗ indicate the mean of the
optimal arm and µi indicate the mean values of all other arms such that µi < µ∗. For the rest of this
section, without loss of generality, let the index of optimal arm be 1.
Theorem 5.1. Given an n-armed bandit model with associated mean vector µµµ ∈ Rn and similarity
graph G smooth on µµµ, i.e. 〈µµµ,LGµµµ〉 ≤ ε, for any 0 < ε < ε0. Let G = ([n], E) be the graph with
only isolated cliques and w.l.o.g let arm 1 be the optimal arm. Then define

Tnecessary =
∑

C∈CG/C∗
min
j∈C

{
4σ2 log 5

(∆j −
√
ε)2

}
+

∑
j∈C∗/1

4σ2 log 5

∆2
j

, (8)

where C∗ is the clique with the optimal arm and ε0 := min
i∈[n]/1,j∈C(i)

[
∆j

[
1− ∆i√

∆2
i+∆2

j

]]2

. Then

any δ-PAC algorithm will need at-least Tnecessary steps to terminate, provided δ ≤ 0.1.

Using Theorem 5.1, we can show that GRUB is minimax optimal for a n-armed bandit problems for
certain class of similarity graph G. The following result shows that the upperbound on the sample
complexity provided in Theorem 4.4 matches the lower bound established in Theorem 5.1 in ∆i up
to a constant factor.
Corollary 5.2 (Isolated clusters). Consider the setup as in Theorem 5.1 with the further restriction

that graph G be such that the optimal node is isolated and ε < minj∈[n]
∆2
j

2 . Define,

Tnecessary ≥
∑

C∈CG/{1}

max
j∈C

{
8σ2 log 5

∆2
j

}
. (9)

Then any algorithm that takes fewer than Tnecessary samples will have a probability of error at least
0.1.

As can be seen in Corollary 5.2, the lower bound expression can scale as standard n-armed bandit
(implying no added advantage of having graph side-information) or can behave as a |CG|-armed
bandit problem (scales as the number of clusters in graph G rather than number of nodes n) purely
by changing the similarity graph G. The difference between CF (connected components in the
subgraph constructed by making optimal arm isolated) and CG (connected components in the given
similarity graph) can lead to more interesting behaviour in terms of lower bound expressions on
sample complexity.

6 ζ-best-arm identification

It can be observed from Theorem 4.4 that the fact that the means are ε-smooth implies that distinguish-
ing arm j from a∗ would require at least O(ε−2) samples. A tighter upper bound on the violation ε
and an edge between j and a∗ would make the suboptimal arm j harder to eliminate. However, it
stands to reason that in such situations, it might be more practical to not demand for the absolute best
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arm, but rather an arm that is nearly optimal. Indeed, in several modern applications we discuss in
Section 1, finding an approximate best arm is tantamount to solving the problem. In such cases, a
simple modification of GRUB can be used to quickly eliminate definitely suboptimal arms, and then
output an arm that is guaranteed to be nearly optimal. To formalize this, we consider the ζ-best arm
identification problem as follows.
Definition 6.1. For a given ζ > 0, arm i is called ζ-best arm if µi ≥ µa∗−ζ , where a∗ = arg maxi µi

The goal of the ζ-best arm identification problem is to return an arm ã that is ζ−optimal. We achieve
this by a simple modification to GRUB, which we dub ζ−GRUB, which ensures that all the remaining

arms i satisfy 4β(ti)
√
t−1

eff,i ≤ ζ. It then outputs the best arm amongst those that are remaining. The
following theorem characterizes the sample complexity for ζ-GRUB:
Theorem 6.2. Consider n-armed bandit problem with mean vector µµµ ∈ Rn. Let G be the given
similarity graph on vertex set [n], and further suppose thatµµµ is ε-smooth. Let C be the set of connected
components of G. Define,

Tsufficient , arg min
D∈G

∑
C∈CD

[ ∑
i∈C∩HD

1

(∆i ∨ ζ)2

[
c1 log

c2
δ(∆i ∨ ζ)

+
ρε

2

]
+ max

i∈C∩ND

{
2

(∆i ∨ ζ)2

[
c1 log

c2
δ(∆i ∨ ζ)

+
ρε

2

]}]
, (10)

where ∆i = µ∗ − µi for all suboptimal arms, HD and ND are as in Definition 4.3, CD is the set
of connected components of a given graph Dand ∆i ∨ ζ = max{ζ,∆i} and c1, c2 are constants
independent of system parameters. Then, with probability at least 1− δ , ζ-GRUB: (a) terminates in
no more than Tsufficient rounds, and (b) returns a ζ-best arm.

The pseudocode for the ζ-GRUB can be found in Appendix G.

7 Experiments

For all our experiments, we use Intel R© CoreTM i7-10875H CPU @ 2.30GHz × 16 with 32 GB
memory. We set δ = 1e− 3, ρ = 2.0, σ = 2.0. We evaluate GRUB with different sampling strategies
from section J and compare its performance to standard UCB algorithm on both synthetic and real
datasets.

Better sampling strategies: Theorem 4.4 established a baseline w.r.t. sampling protocol by solving
Tsufficient for naive cyclic sampling policy (a sampling policy which does not exploit the graph
properties). Note that, even if the sampling policy does not utilize any graph properties, the similarity
graph is still being utilized in computing the mean estimate and the confidence widths. For the
safe elimination of suboptimal arms, the ultimate goal of GRUB is to shrink the confidence bounds
βi
√

(teff,i)−1 as quickly as possible. For the complete description of all the alternatives please refer
to Appendix J

Synthetic Data: We consider an n-armed bandit setup with the aim of finding the best arm. The
number of arms scale from n = 50 to 200 in steps of 50. We consider 2 cases: G is a Stochastic
Block model(SBM) with parameters (p, q) = (0.9, 1e−4) and G is a Barabási–Albert(BA) graph
with parameter m = 2, both containing 10 clusters. We run every setup for 20 runs and record the
stopping time for all runs. In Figure 1, we compar the baseline cyclic algorithm (Nograph-UCB) with
GRUB and its variants (GRUB-MVM, JVM-O, JVM-N), more details on this in Appendix J.

As can be seen in Figure 1, all graph-aware algorithms (GRUB with different sampling policies)
outperform the standard UCB based best-arm identification algorithm. Within the different GRUB,
different sampling policies exploit the graph infromation in different ways, leading to variations
in their performance. GRUB (cyclic sampling based) is outperformed by all other sampling based
GRUB methods.

We show additional experiments with different graph parameters for Stochastic block model and
Barabási-Albert graphs and different cluster sizes as well as real data in Appendix K. The full code
used for conducting experiments can be found at the following Github repository. Discussion about
limitations, future works and broader impact are provided in Appendix A.
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Figure 1: (Best seen in color) Performance of GRUB and its variant sampling protocols for SBM
((p, q) = (0.95, 1e−4)) [Left] and BA (m = 2) [Right]. GRUB outperforms the standard cyclic UCB
method
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Appendix

The appendix is organized as follows. In Appendix A we provide a discussion of the results of the
paper, future work, and broader impacts. Appendices B-D and Appendix I provide various supporting
results and insights into our main theoretical results. Appendix E and Appendix G provide sample
complexity guarantees for GRUB and ζ-GRUB respectively. Appendix F states and proves necessary
conditions on the sample complexity, and Appendix H presents a discussion on the incomparability
of our graph bandits problem with that of linear bandits. Finally, Appendix J and K contain better
sampling strategies and additional experiments respectively.

An anonymized repository containing the code that supports the algorithmic and experimental results
of this paper may be found here (see also Appendix L):

A Discussion and Broader Impacts

In this work, we consider the problem of best arm identification (and approximate best arm identi-
fication) when one has access to information about the similarity between the arms in the form of
a graph. We propose a novel algorithm GRUB for this important family of problems and establish
sample complexity guarantees for the same. In particular, our theory explicitly demonstrated that
benefit of this side information (in terms of the properties of the graph) in quickly locating the best
or approximate best arms. We support these theoretical findings with experimental results in both
simulated and real settings.

Future Work and Limitations. We outline several sampling policies inspired by our theory in
Section 7; an extension of our theoretical results to account for these improved sampling policies is a
natural candidate for further exploration. The algorithms and theory of this paper assume knowledge
of (an upper bound) on the smoothness of the reward vector with respect to the graph. While this
is where one uses domain expertise, this could be hard to estimate in certain real world problems.
A generalization of the algorithmic and theoretical framework proposed here that is adaptive to
the unknown graph-smoothness is an exciting avenue for future work5,6. The sub-Gaussianity
assumption of this work can also be generalized to other tail behaviors in follow up work. Another
limitation of this work is that the statistical benefit of the graph-based quadratic penalization comes
at a computational cost – each mean estimation step involves the inversion of an n× n matrix which
has a complexity of O(n2 log(n)). However, an exciting recent line of work suggests that this matrix
inversion can be made significantly faster when coupled with a spectral sparsification of the graph
G7,8 while controlling the statistical impact of such a modification. In the context of this problem,
this suggests a compelling avenue for future work that studies the statstics-vs-computation tradeoffs
in using graph side information.

For this work, we demonstrated the advantages of this side information in pure exploration problems,
given knowledge of such an ε. Extensions that consider goodness-of-fit and misspecification with
respect to the graph G and smoothness parameters ε are interesting avenues for follow up work.
Finally, we focus on the ridge-type regularizer of the form 〈µ,LGµ〉. For future work, it may be
productive to expand to a much broader class of regularizers such as those of the form of ‖Aµ‖pq ,
where A represents a information/ structural constraint matrix and p, q are some positive numbers.

Potential Negative Social Impacts. Our methods can be used for various applications such as
drug discovery, advertising, and recommendation systems. In scientifically and medically critical
applications, the design of the reward function becomes vital as this can have a significant impact
on the output of the algorithm. One must take appropriate measures to ensure a fair and transparent
outcome for various downstream stakeholders. With respect to applications in recommendation and
targeted advertising systems, it is becoming increasingly evident that such systems may exacerbate

5T. Tony Cai, Ming Yuan "Adaptive covariance matrix estimation through block thresholding," The Annals
of Statistics, Ann. Statist. 40(4), 2014-2042, (August 2012)

6Banerjee, T., Mukherjee, G., & Sun, W. (2020). Adaptive sparse estimation with side information. Journal
of the American Statistical Association, 115(532), 2053-2067.

7Spielman, D. A., & Teng, S. H. (2011). Spectral sparsification of graphs. SIAM Journal on Computing,
40(4), 981-1025.

8Vishnoi, Nisheeth K. "Lx= b." Foundations and Trends in Theoretical Computer Science 8.1–2 (2013):
1-141.
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polarization and the creation of filter-bubbles. Especially the techniques proposed in this paper could
reinforce emerging polarization (which would correspond to more clustered graphs and therefore
better recommendation performance) when used in such contexts. It will of course be of significant
interest to mitigate such adverse outcomes by well-designed interventions or by considering multiple
similarity graphs that capture various dimensions of similarity. This is a compelling avenue for future
work.

B Parameter estimation

At any time T , GRUB, along with the graph-side information, uses data gathered to estimate the
mean µ̂µµT in order to decide the sampling and elimination protocols. The following lemma gives the
estimation routine used for GRUB.

Lemma B.1. The closed form expression of µ̂µµT is given by,

µ̂µµT =

(
T∑
t=1

eπte
T
πt + ρLG

)−1( T∑
t=1

eπtr
πt
t

)
(11)

Proof. Using the reward data {rt,πt}Tt=1 gathered up-to time T and the sampling policy πππT , the
mean vector estimate µ̂µµT is computed by solving the following laplacian-regularized least-square
optimization schedule:

µ̂µµT = arg min
µµµ∈Rn

T∑
t=1

(µπt − rt,πt)
2

+ ρ〈µµµ,LGµµµ〉 (12)

where ρ > 0 is a tunable penalty parameter. The above optimization problem can be equivalently
written in the following quadratic form:

µ̂µµT = arg min
µµµ∈Rn

(
〈µµµ, V (πππT , G)µµµ〉 − 2

〈
µµµ,

(
T∑
t=1

eπtrt,πt

)〉
+

T∑
t=1

r2
t,πt

)
where V (πππT , G) denotes,

V (πππT , G) =

T∑
t=1

eπte
T
πt + ρLG (13)

In order to obtain µ̂µµT , we compute vanishing point of the gradient as follows,(
〈µµµ, V (πππT , G)µµµ〉 − 2

〈
µµµ,

(
T∑
t=1

eπtrt,πt

)〉
+

T∑
t=1

r2
t,πt

)
|µµµ=µ̂µµT

= 0

⇒ µ̂µµT = V (πππT , G)−1

(
T∑
t=1

eπtr
πt
t

)
(14)

The sampling policy in GRUB uses the mean estimates and their high probability confidence bounds
to eliminate suboptimal arm. In the following lemma we compute the high probability confidence
bounds on the estimates of the mean and introduces the idea of effective samples of each arm given
the graph side information.

Lemma B.2. For any T > k(G) and i ∈ [n], the following holds with probability no less than
1− δ

wi(πππT ) :

|µ̂iT − µi| ≤

√
1

teff,i

(
2σ

√
14 log

(
2wi(πππT )

δ

)
+ ρ‖µµµ‖G

)
(15)
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where wi(πππT ) = a0nt
2
eff,i for some constant a0 > 0, µ̂iT is the i-th coordinate of the estimate from

B.1 and,

teff,i =
1[(∑T

t=1 eπte
>
πt + ρLG

)−1
]
ii

Proof. Let the sequence of bounded variance noise and data gathered up-to time T be denoted by
{ηt, rπt,t}Tt=1. Let ST =

∑T
t=1 ηteπt and NT =

∑T
t=1 eπte

T
πt . Using the closed form expression

of µ̂µµT from eq. B.1, the difference between the estimate and true value µ̂iT − µi can be obtained as
follows:

µ̂iT − µi = 〈ei, µ̂µµT −µµµ〉 = 〈ei, V −1
T ST − ρV −1

T LGµµµ〉

The deviation µ̂iT − µi can be upper-bounded as follows:

|〈ei, µ̂µµT −µµµ〉| ≤ |〈ei, V −1
T ST 〉|+ |〈ei, ρV −1

T LGµµµ〉|

Further, in order to obtain the variance of the estimate µ̂µµT , we bound the deviation |µiT − µi| by
separately bounding |〈ei, V −1

T ST 〉| and |〈eiρV −1
T LGµµµ〉|.

With regards to the first term 〈ei, V −1
T ST 〉, note that

〈ei, V −1
T ST 〉 =

〈
ei, V

−1
T

(
T∑
t=1

eπtηt

)〉

=

T∑
t=1

〈
ei, V

−1
T eπt

〉
ηt

Using a variant of Azuma’s inequality [47, 51], for any κ > 0 the following inequality holds,

P
(
|〈ei, V −1

T ST 〉|2 ≤ κ2
)
≥ 1− 2 exp

{
− κ2

56σ2
∑T
t=1

(〈
ei, V

−1
T eπt

〉)2
}

(16)

Using the fact that VT �
(∑T

t=1 eπte
T
πt

)
, we can further simplify the above bound using the

following computation,

T∑
t=1

(〈
ei, V

−1
T eπt

〉)2
=

〈
V −1
T ei,

(
T∑
t=1

eπte
T
πt

)
V −1
T ei

〉
≤ 〈ei, V −1

T ei〉 = [V −1
T ]ii (17)

Substituting δ′ = 2 exp

{
− κ2

56σ2
∑T
t=1(〈ei,V −1

T eπt〉)2

}
, we can finally conclude that given the histori-

cal data FT−1 till time T − 1, following is true with probability 1− δ′,

|〈ei, V −1
T ST 〉|2 ≤ 56σ2[V −1

T ]ii log

(
2

δ′

)
(18)

Second term 〈ei, ρV −1
T LGµµµ〉 can be upperbounded using cauchy-schwartz inequality,

|〈ei, ρV −1
T LGµµµ〉| = ρ〈ei, LGµµµ〉V −1

T

≤ ρ
√
〈ei, V −1

T ei〉
√
〈LGµµµ, V −1

T LGµµµ〉

≤ ρ
√

[V −1
T ]ii‖µµµ‖G (19)

Combining the upperbound (19), (18) and substituting δ′ = δ
w(πππT ) we get Lemma 3.2. Hence

proved.
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C Influence Factor

A key component in our characterization of the performance of GRUB is the influence factor for each
arm; recall that for a given graph D, Ci(D) denotes the connected component that contains i. The
influence factor for each arm is defined as,

Definition C.1. Let D be a graph on the vertex set [n]. For each j ∈ [n], define influence factor
I(j,D) as:

I(j,D) =

{
min

i∈Cj(D),i6=j
{rD(i, j)−1} if |Cj(D)| > 1

0 otherwise
(20)

where, rD(i, j) is the resistance distance between arm i and j on graph D as in Definition 4.1.

Note that we refer the resistance distance without the parameter δ, as the value of resistance distance is
independent of the value of δ. This happens due to the cancellation of δ factor inRii+Rjj−Rji−Rij .
The influence factor can also be thought of as the minimum influence any arm i in the connected
component of arm j has over the arm j

D Effective Samples

Theorem D.1. Let πππT indicate the sampling policy until time T . Let G be the given graph, I(., G)
indicates the minimum influence factor for arms. Then effective samples can be lower bounded by,

teff,i ≥ ti +
1

2
bmin{ρI(i, G),

∑
j∈C(i)

tj}c (21)

where ti indicates the no. of samples of arm i and b · c indicates the floor.

Proof. Using Lemma I.5, we have the following bound on [V −1
T ]ii,

[V (πππT , G)−1]ii ≤ max

{
1

ti + ρI(i,G)
2

,
1

ti + tC−ti
2

}
(22)

where T is the total number of samples and tC is all the samples from the connected component C(i)
apart from arm i. Thus rewriting the equation for teff,i, we get,

teff,i ≥ ti +
1

2
min{ρI(i, G),

∑
j∈C(i)

tj} (23)

Hence proved.

E GRUB Sample complexity

In order to compute the sample complexity for GRUB, we classify the arms into two categories:
competitive and non-competitive. The split of arms into these two categories is not required for the
algorithm, but provides tighter complexity bounds as will be observed in this appendix. The division
of the arms is contingent on its suboptimality and the structure of the provided graph side information.
A modified version of the Definition (4.3) of competitive set and non-competitive set is as follows:
Definition E.1. Fix µµµ ∈ Rn, graph D, regularization parameter ρ, confidence parameter δ, and
smoothness parameter ε and noise variance σ. We defineH to be the set of competitive arms and N
to be the set of non-competitive arms as follows:

H(D,µµµ, δ, ρ, ε) =

{
j ∈ [n]

∣∣∆i ≤ 2

√
2

ρI(i)

(
2σ

√
14 log

(
2a0nρ2I(i)2

δ

)
+ ρε

)}
,

N (D,µµµ, δ, ρ, ε) , [n] \ H(D,µµµ, δ, ρ, ε)
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When the context is clear, we will use suppress the dependence on the parameters in Definition E.1.

Further, we derive an expression for the worst-case sample complexity by analysing the number of
samples required to eliminate arms with different difficulty levels, i.e. arms in competitive set and
non-competitive set. We first derive the sample complexity results for the case when graph G is
connected and then extend it to disconnected graphs.
Lemma E.2. Consider n-armed bandit problem with mean vector µµµ ∈ Rn. Let G be a given
connected similarity graph on the vertex set [n], and further suppose that µµµ is ε-smooth. Define

Tsufficient ,
∑
i∈H

1

∆2
i

[
c1 log

c2
δ∆i

+
ρε

2

]
+ max

i∈N

{
2

∆2
i

[
c1 log

c2
δ∆i

+
ρε

2

]}
(24)

Then, with probability at least 1− δ, GRUB: (a) terminates in no more than Tsufficient rounds, and (b)
returns the best arm a∗ = arg maxi µi.

Proof. With out loss of generality, assume that a∗ = 1. Let {ti}ni=1 denote the number of plays of
each arm upto time T . By Lemma 3.2, we can state that,

P
(
|µ̂iT − µi| ≥ γi(πππT )

)
≤ 2δ

a0nt2eff,i
(25)

where, γi(πππT ) = βi(πππT )
√
t−1

eff,i and βi(πππT ) =

(
2σ

√
14 log

(
2a0nt2eff,i

δ

)
+ ρ‖µµµ‖G

)
.

As is reflected in the elimination policy (4), at any time t, arm 1 can be mistakenly eliminated in
GRUB only if µ̂it > µ̂1

t + γi(πππt) + γ1(πππt). Let Ts be the stopping time of GRUB, then the total
failure probability for GRUB can be upper-bounded as,

P(Failure) ≤
Ts∑
t=2

n∑
i=2

P
(
µ̂it ≥ µ̂1

t + γi(πππt) + γ1(πππt)
)

Note that P
(
µ̂it ≥ µ̂1

t + γi(πππt) + γ1(πππt)
)
≤
[
P
(
µ̂it ≥ µi + γi(πππt)

)
+ P

(
µ̂1
t ≤ µ1 − γ1(πππt)

)]
, pro-

vided that γi(πππt), γ1(πππt) ≤ ∆i

2 . Hence the failure probability can be upperbounded as,

P(Failure) ≤
n∑
i=2

Ts∑
t=2

[
P
(
µ̂it ≥ µi + γi(πππt)

)
+ P

(
µ̂1
t ≤ µ1 − γ1(πππt)

)]
(26)

conditioned on γi(πππT ), γ1(πππT ) ≤ ∆i

2 .

Let a0 ≥ 4
∑∞
t=1 t

−2
eff,i, then from Lemma 3.2,

P(Failure) ≤
n∑
i=2

Ts∑
t=2

2δ

a0nt2eff,i

≤ δ (27)

The finiteness of the infinite sum of teff,i
−2 can be found in Lemma I.13.

Thus, in order to keep P(Failure) ≤ δ, it is sufficient if, at the time of elimination of arm i, we have
enough samples to ensure,

γi(πππT ) ≤ ∆i

2√
1

teff,i

2σ

√√√√14 log

(
2a0nt2eff,i

δ

)
+ ρε

 ≤ ∆i

2
(28)

In the absence of graph information, equation (28) devolves to the same sufficiency condition for
number of samples required for suboptimal arm elimination as [13], upto constant factor. Rewriting
the above equation,

log (ai)

ai
≤
√

δ

d1

∆2
i

d0
(29)
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where d0 = 64 × 14σ2, d1 = 2na0e
ρ2ε2

4×14σ2 and ai =
√

d1
δ teff,i. The following bound on ai is

sufficient to satisfy eq. (29),

ai ≥ 2

√
d1

δ

d0

∆2
i

log

(√
d1

δ

d0

∆2
i

)
Resubstituting teff,i, we obtain the sufficient number of plays required to eliminate arm i as,

teff,i ≥
c1
∆2
i

[
log

(
c2

δ
1
2 ∆2

i

)
+ c3

]
(30)

where c1 = 2 × 64 × 14σ2, c2 = 64 × 14σ2
√

2na0 and c3 = ρ2ε2

8×14σ2 . In the further text we are
suppressing the powers of δ,∆i within the log factor as it adds only a constant multiple to the lower
bound.

The further part of the proof we use the following bound on teff,· from Theorem D.1 as follows:

teff,i ≥ ti +
1

2
min {ρI(i), T − ti} ∀i ∈ [n] (31)

Hence a sufficiency condition for the GRUB to produce the best-arm with probability 1− δ is given
when both the following conditions are satisfied,

ti +
ρI(i)

2
≥ 1

∆2
i

[
c1 log

(
c2
δ∆i

)
+
ρε

2

]
(32)

and,

T + ti ≥ T ≥
2

∆2
i

[
c1 log

(
c2
δ∆i

)
+
ρε

2

]
(33)

From the Definition E.1 of competitive armsH and non-competitive arms N , we have,

H =

{
j ∈ [n]

∣∣∆i ≤ 2

√
2

ρI(i)

(
2σ

√
14 log

(
2a0nρ2I(i)2

δ

)
+ ρε

)}
(34)

After the first maxi∈N

{
2

∆2
i

[
c1 log c2

δ∆i
+ ρε

2

]}
samples, all arms in N are eliminated. Further, let

k1 be the index of the first arm to be eliminated (inH) and t∗k1 be the number of samples of arm k1

before getting eliminated then the total number of additional time steps played until the arm k1 is
eliminated is at most |H|t∗k1 . Let k2 be the index of the next arm inH to be eliminated. The number
of additional plays until the next arm is eliminated is given by (|H| − 1)[t∗k2 − t

∗
k1

] and so on.

Summing up all the samples required to converge to the optimal arm is given by, (let t∗k0 = 0)

|H|∑
h=1

(|H| − h))[t∗kh − t
∗
kh−1

] =

|H|−1∑
h=1

t∗kh =
∑
i∈H/1

t∗i (35)

Hence the final sample complexity can be computed as follows:

• Number of plays required for arms inH :∑
i∈H/1

t∗i ≥
∑
i∈H/1

1

∆2
i

[
c1 log

c2
δ∆i

+
ρε

2

]
(36)

• Number of plays required for all the arms in N := [n]/H to be eliminated:

T ≥ max
i∈N

{
2

∆2
i

[
c1 log

c2
δ∆i

+
ρε

2

]}
(37)
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Hence the final sample complexity can be given by,

Tsufficient , max
i∈N

{
2

∆2
i

[
c1 log

c2
δ∆i

+
ρε

2

]}
+
∑
i∈H/1

1

∆2
i

[
c1 log

c2
δ∆i

+
ρε

2

]
(38)

Hence proved.

We extend Lemma E.2 to the case when graph G has disconnected clusters.

Note: The following theorem stated in the main paper has a typographical error in the equation for
Tsufficient in place of arg min it is supposed to be min.
Theorem E.3. Consider n-armed bandit problem with mean vector µµµ ∈ Rn. Let G be the set of
subgraphs of given similarity graph G on the vertex set [n], and further suppose that µµµ is ε-smooth.
Define

Tsufficient , min
D∈G

∑
C∈CD

[ ∑
i∈C∩HD

1

∆2
i

[
c1 log

c2
δ∆i

+
ρε

2

]
+ max
i∈C∩ND

{
2

∆2
i

[
c1 log

c2
δ∆i

+
ρε

2

]}]
(39)

where ∆i = µ∗ − µi for all suboptimal arms, HD and ND are as in Definition E.1, CD is the set
of connected components of a subgraph D ∈ G and c1, c2 are constants independent of system
parameters. Then, with probability at least 1− δ, GRUB: (a) terminates in no more than Tsufficient
rounds, and (b) returns the best arm a∗ = arg maxi µi.

Proof. Let CG denote the connected components of graph G. From Lemma E.2, the number of
samples for each connected component C ∈ CG can be given as,

Tsufficient =

[ ∑
i∈C∩H

1

∆2
i

[
c1 log

c2
δ∆i

+
ρε

2

]
+ max
i∈C∩N

{
2

∆2
i

[
c1 log

c2
δ∆i

+
ρε

2

]}]
(40)

We can obtain the sample complexity for obtaining the best arm by summing it over all the components
C ∈ C, gives us the sample complexity for GRUB while considering graph G.

Tsufficient =
∑
C∈CG

[ ∑
i∈C∩H

1

∆2
i

[
c1 log

c2
δ∆i

+
ρε

2

]
+ max
i∈C∩N

{
2

∆2
i

[
c1 log

c2
δ∆i

+
ρε

2

]}]
(41)

Any subgraph D of graph G satisfies,

〈µµµ,LGµµµ〉 ≤ ε⇒ 〈µµµ,LDµµµ〉 ≤ ε (42)

As seen in Definition E.1, the influence factor is instrumental in deciding the competitive and
non-competitive sets, which further dictates the sample complexity bounds. Further, notice from
Lemma I.8 that the influence factor I(i,D) is not monotonic when considering subgraph D of graph
G. Hence considering a subgraph of G could potentially increase the number of non-competitive
arms and provide us with a tighter bound on the performance for GRUB.

Hence Tsufficient in (40) can be made tighter by considering the minimum value over the entire set of
subgraphs G.

We next derive sample complexity upper bounds for GRUB in certain illuminating special cases.
Corollary E.4 (Isolated clusters). Consider the setup as in Theorem 4.4 with the further restriction
that G consists of a subgraph F such that optimal node is isolated and arms [2, . . . , n] are split in k

clusters and ∆i ≥ 2
√

2
ρI(i,F )

(
2σ

√
14 log

(
2a0nρ2I(i,F )2

δ

)
+ ρε

)
, ∀i ∈ [2, . . . , n]. Define

Tsufficient ,
∑

C∈CF /1

max
j∈C

2

∆2
j

[
c1 log

(
c2
δ∆i

)
+
ρε

2

]
(43)

Then, with probability at least 1− δ, GRUB: (a) terminates in no more than Tsufficient rounds, and (b)
returns the best arm a∗ = arg maxi µi.
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Algorithm 1 GRUB
Input: Regularization parameter ρ, Smoothness parameter ε, Error bound δ, Total arms n, Lapla-
cian LG, Sub-gaussianity parameter σ
t← 0
A = {1, 2, . . . , n}
t = 0
V0 ← ρLG
C(G)← Cluster-Identification(LG)
for C ∈ C(G) do
t← t+ 1
Pick random arm k ∈ C to observe reward rt,k
Vt ← Vt−1 + eke

T
k , and xt ← xt−1 + rt,kek

end for
while |A| > 1 do
t← t+ 1
for i ∈ A do
teff,i ← ([V −1

t ]ii)
−1

βi(t)← 2σ

√
14 log

(
2nt2eff,i
δ

)
+ ρε

end for
k ← Sampling-Policy(t, Vt, A, C(G))
Sample arm k to observe reward rt,k
Vt ← Vt−1 + eke

T
k

xt ← xt−1 + rt,kek
µ̂µµt ← V −1

t xt

amax ← arg max
i∈A

[
µ̂it − β(ti)

√
t−1

eff,i

]
A←

{
a ∈ A | µ̂amax

t − µ̂at ≤ βa(t)
√
t−1

eff,a

+βamax
(t)
√
t−1

eff,amax

}
end while
return A

Corollary E.4 shows that in scenarios where the arms are well clustered, the sample complexity of
GRUB can scale with the number of clusters, a quantity that is typically significantly smaller than the
total number of nodes in the graph.
Corollary E.5 (Star graph). Consider the setup as in Theorem 4.4 with the further restric-
tion that G consists of a star subgraph with the central node as the optimal arm and ∆i ≤

2
√

2
ρI(i,F )

(
2σ

√
14 log

(
2a0nρ2I(i,F )2

δ

)
+ ρε

)
, ∀i ∈ [2, . . . , n]. Define

Tsufficient ,
n∑
i=2

1

∆2
i

[
c1 log

(
c2
δ∆i

)
+
ρε

2

]
(44)

Then, with probability at least 1− δ, GRUB: (a) terminates in no more than Tsufficient rounds, and (b)
returns the best arm a∗ = arg maxi µi.

In Corollary E.5, Tsufficient is the same sample complexity as vanilla best arm identification, upto
constant factors which is due to the fact that pulling one of the spoke arms does not yield much
information about the other spoke arms, and this is the exact situation in the standard pure exploration
setting.

F Lower bounds

In this section we give a lower bound on the sample complexity for any δ-PAC to return the best arm
for a n armed bandit problem along with graph side information.
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Theorem F.1. Given an n-armed bandit model with associated mean vector µµµ ∈ Rn and similarity
graph G smooth on µµµ, i.e. 〈µµµ,LGµµµ〉 ≤ ε, for any 0 < ε < ε0. Let G = ([n], E) be the graph with
only k isolated cliques and w.l.o.g let arm 1 be the optimal arm. Then define

Tnecessary =
∑

C∈CG/C∗
min
j∈C

{
4σ2 log 5

(∆j −
√
ε)2

}
+

∑
j∈C∗/1

4σ2 log 5

∆2
j

(45)

where C∗ is the clique with the optimal arm and ε0 := min
i∈[n]/1,j∈C(i)

[
∆j

[
1− ∆i√

∆2
i+∆2

j

]]2

. Then

any δ-PAC algorithm will need at-least Tnecessary steps to terminate, provided δ ≤ 0.1.

Proof. We prove the theorem in two steps: Firstly, we construct the sample complexity lower bound
for the similarity graph with the isolated optimal arm and a clique of rest of the sub-optimal arms,
followed by step 2 the sample complexity lower bound for a graph with single cluster

Step 1:

Consider a n+ 1 armed bandit problem with mean vector µµµ ∈ Rn+1 and similarity graph M with an
isolated optimal arm (arm 1) and n-clique cluster of suboptimal arms, satisfying the condition for
smoothness of rewards over the graph,i.e., 〈µµµ,LMµµµ〉 ≤ ε. Then the following holds

max
i6=1

µi ≤ min
j 6=1
{µj +

√
ε} (46)

Assume that ordering of mean in n-clique of suboptimal arms is known. From [26], there exists a
δ-PAC algorithm, for δ ≤ 0.1, which can successful identify the best arm for the subproblem with
just the optimal arm and arm with the maximum mean in the n-clique cluster, i.e. j′ = arg

j 6=1
maxµj

with the total number of samples given by,

T ≥ 4 log 5σ2

∆2
j′

(47)

Now consider the case where the ordering of the mean in n-clique is unknown. In order to remove all
the suboptimal arms provided ε ≤ minj 6=1 ∆2

j and (46) holds, it is suffices to be able to distinguish
between the optimal arm and a hypothetical suboptimal arm with mean µj +

√
ε where j is any arm

from suboptimal n-clique, and the minimum number of samples required by any δ-PAC algorithm to
successfully identify the best arm with δ ≤ 0.1 is given by,

T ≥ 4 log 5σ2

(∆j −
√
ε)2

(48)

The best performance in terms of sample complexity out of all the random choice of arm from the
suboptimal n-clique cluster is,

T ≥ min
j 6=1

{
4 log 5σ2

(∆j −
√
ε)2

}
(49)

Given ε0 := min
i∈[n]/1,j∈C(i)

[
∆j

[
1− ∆i√

∆2
i+∆2

j

]]2

and ε < ε0, it can be verified that for any arm

i, j 6= 1,

min
j 6=1

4 log 5σ2

(∆j −
√
ε)2

<
4 log 5σ2

∆2
i

+
4 log 5σ2

∆2
j

(50)

where the left hand side corresponds to the sample complexity lower bound of removing the subopti-
mal arms i, j with the graph side information and the right hand side corresponds to the same without
graph side information.

Hence it can be inferred that it is inefficient to remove the arms individually (disregarding the graph
information).
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Step 2 :

Consider a n+ 1 armed bandit problem with mean vector µµµ ∈ Rn+1 with a given similarity graph N
such that 〈µµµ,LNµµµ〉 ≤ ε. Let all the suboptimal arms be connected to the optimal arm.

Here we show by an adversarial example that it is not possible to have a lower bound on the sample
complexity which scales better than,

T ≥
∑
j 6=1

4 log 5σ2

∆2
j

(51)

There exists a δ-PAC algorithm which can determine that arms j = 3, . . . , n are suboptimal after
T ≥

∑
j 6=1,2

1
∆2
j

samples. From the smoothness of rewards on the similarity graph N we know that,

−
√
ε ≤ µ1 − µj ≤

√
ε ∀j ∈ [2, 3, . . . , n] (52)

This information does not help us identify or even reduce the number of samples required to identify
optimal arm between arm 1 and arm 2. Thus no δ-PAC algorithm, δ ≤ 0.1, can determine the optimal
arm from arm 1 and arm 2 without an additional 4 log 5σ2

∆2
2

samples for determining the best arm.

Using above two steps, we construct the proof for lower bound as follows:

Now consider the graph side information as defined in the theorem, and let CG denote the set of
connected components of graph G and C∗ ∈ CG be the component containing the optimal arm.
Finding the best arm in this setup requires elimination of the suboptimal arms with in the connected
component containing optimal arm j ∈ C∗ and elimination of the other connected components with
suboptimal arms j ∈ CG/C∗. Hence, the sample complexity lower bounds [26, 27] for any δ-PAC
algorithm with δ ≤ 0.1 to eliminate these arms using the tools developed in step 1 and step 2, is given
by

T ≥
∑

j∈C∗/1

4σ2 log 5

∆2
j

+
∑

C∈CG/C∗
min
j∈C

{
4σ2 log 5

(∆j −
√
ε)2

}
(53)

G ζ-GRUB Sample complexity proof

Definition G.1. Fix µµµ ∈ Rn, graph D, confidence parameter δ, noise variance σ, and relaxation
parameter ζ. We defineH to be the set of competitive arms and N to be the set of non-competitive
arms for ζ-GRUB as follows:

H(D,µµµ, δ, ζ) =

{
j ∈ [n]

∣∣∆ζ
i ≤ 2

√
2

ρI(i)

(
2σ

√
14 log

(
2a0nρ2I(i)2

δ

)
+ ρε

)}
,

N (D,µµµ, δ, ζ) , [n] \ H(D,µµµ, δ, ζ)

where ∆ζ
i , max{∆i, ζ}.

Lemma G.2. Consider n-armed bandit problem with mean vector µµµ ∈ Rn. Let G be a given
connected similarity graph on the vertex set [n], and further suppose that µµµ is ε-smooth. Define

Tsufficient ,
∑
i∈H

1

(∆ζ
i )

2

[
c1 log

c2

δ∆ζ
i

+
ρε

2

]
+ max

i∈N

{
2

(∆ζ
i )

2

[
c1 log

c2

δ∆ζ
i

+
ρε

2

]}
(54)

where ∆ζ
i , max{∆i, ζ}. Then, with probability at least 1− δ, GRUB: (a) terminates in no more

than Tsufficient rounds, and (b) returns a ζ-best arm

Proof. With out loss of generality, assume that a∗ = 1. Let {ti}ni=1 denote the number of plays of
each arm upto time T . By Lemma 3.2, we can state that,

P
(
|µ̂iT − µi| ≥ γi(πππT )

)
≤ 2δ

a0nt2eff,i
(55)
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where, γi(πππT ) = βi(πππT )
√
t−1

eff,i and βi(πππT ) =

(
2σ

√
14 log

(
2a0nt2eff,i

δ

)
+ ρ‖µµµ‖G

)
.

As is reflected in the elimination policy (4), at any time t, arm 1 can be mistakenly eliminated in
GRUB only if µ̂it > µ̂1

t + γi(πππt) + γ1(πππt). Let Ts be the stopping time of GRUB, then the total
failure probability for GRUB can be upper-bounded as,

P(Failure) ≤
Ts∑
t=2

n∑
i=2

P
(
µ̂it ≥ µ̂1

t + γi(πππt) + γ1(πππt)
)

Note that P
(
µ̂it ≥ µ̂1

t + γi(πππt) + γ1(πππt)
)
≤
[
P
(
µ̂it ≥ µi + γi(πππt)

)
+ P

(
µ̂1
t ≤ µ1 − γ1(πππt)

)]
, pro-

vided that γi(πππt), γ1(πππt) ≤
∆ζ
i

2 . Hence the failure probability can be upperbounded as,

P(Failure) ≤
n∑
i=2

Ts∑
t=2

[
P
(
µ̂it ≥ µi + γi(πππt)

)
+ P

(
µ̂1
t ≤ µ1 − γ1(πππt)

)]
(56)

conditioned on γi(πππT ), γ1(πππT ) ≤ ∆ζ
i

2 .

Let a0 ≥ 4
∑∞
t=1 t

−2
eff,i, then from Lemma 3.2,

P(Failure) ≤
n∑
i=2

Ts∑
t=2

2δ

a0nt2eff,i

≤ δ (57)

The finiteness of the infinite sum of teff,i
−2 can be found in Lemma I.13.

Thus, in order to keep P(Failure) ≤ δ, it is sufficient if, at the time of elimination of arm i, we have
enough samples to ensure,

γi(πππT ) ≤ ∆ζ
i

2√
1

teff,i

2σ

√√√√14 log

(
2a0nt2eff,i

δ

)
+ ρε

 ≤ ∆ζ
i

2
(58)

Rewriting the above equation,

log (ai)

ai
≤
√

δ

d1

(∆ζ
i )

2

d0
(59)

where d0 = 64 × 14σ2, d1 = 2na0e
ρ2ε2

4×14σ2 and ai =
√

d1
δ teff,i. The following bound on ai is

sufficient to satisfy eq. (59),

ai ≥ 2

√
d1

δ

d0

(∆ζ
i )

2
log

(√
d1

δ

d0

(∆ζ
i )

2

)
Resubstituting teff,i, we obtain the sufficient number of plays required to eliminate arm i as,

teff,i ≥
c1

(∆ζ
i )

2

[
log

(
c2

δ
1
2 (∆ζ

i )
2

)
+ c3

]
(60)

where c1 = 2× 64× 14σ2, c2 = 64× 14σ2
√

2na0 and c3 = ρ2ε2

8×14σ2 .

The further part of the proof depends crucially on the following bound on teff,i for all i ∈ [n] from
Theorem D.1 as follows:

teff,i ≥ ti +
1

2
min {ρI(i), T − ti} (61)
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Hence a sufficiency condition for the GRUB to produce the ζ-best arm with probability 1− δ is given
when both the following conditions are satisfied,

ti +
ρI(i)

2
≥ 1

(∆ζ
i )

2

[
c1 log

(
c2

δ∆ζ
i

)
+
ρε

2

]
(62)

and,

T + ti ≥ T ≥
2

(∆ζ
i )

2

[
c1 log

(
c2

δ∆ζ
i

)
+
ρε

2

]
(63)

From the Definition G.1 we have the set of competitive arms H and non-competitive arms N as
follows:

H =

{
j ∈ [n]

∣∣∆ζ
i ≤ 2

√
2

ρI(i)

(
2σ

√
14 log

(
2a0nρ2I(i)2

δ

)
+ ρε

)}
(64)

After the first maxi∈N

{
2

(∆ζ
i )2

[
c1 log c2

δ∆ζ
i

+ ρε
2

]}
samples, all arms in N are eliminated. Further,

let k1 be the index of the first arm to be eliminated (inH) and t∗k1 be the number of samples of arm
k1 before getting eliminated then the total number of additional time steps played until the arm k1 is
eliminated is at most |H|t∗k1 . Let k2 be the index of the next arm inH to be eliminated. The number
of additional plays until the next arm is eliminated is given by (|H| − 1)[t∗k2 − t

∗
k1

] and so on.

Summing up all the samples required to converge to the optimal arm is given by, (let t∗k0 = 0)
|H|∑
h=1

(|H| − h))[t∗kh − t
∗
kh−1

] =

|H|−1∑
h=1

t∗kh =
∑
i∈H/1

t∗i (65)

Hence the final sample complexity can be computed as follows:

• Number of plays required for arms inH :∑
i∈H/1

t∗i ≥
∑
i∈H/1

1

(∆ζ
i )

2

[
c1 log

c2

δ∆ζ
i

+
ρε

2

]
(66)

• Number of plays required for all the arms in N := [n]/H to be eliminated:

T ≥ max
i∈N

{
2

(∆ζ
i )

2

[
c1 log

c2

δ∆ζ
i

+
ρε

2

]}
(67)

Hence the final sample complexity can be given by,

Tsufficient , max
i∈N

{
2

(∆ζ
i )

2

[
c1 log

c2

δ∆ζ
i

+
ρε

2

]}
+
∑
i∈H/1

1

(∆ζ
i )

2

[
c1 log

c2

δ∆ζ
i

+
ρε

2

]
(68)

We extend Lemma G.2 to the case when graph G has disconnected clusters.

Note: The following theorem stated in the main paper has a typographical error in the equation for
Tsufficient in place of arg min it is supposed to be min.
Theorem G.3. Consider n-armed bandit problem with mean vector µµµ ∈ Rn. Let G be the set of
subgraphs given similarity graph G on the vertex set [n], and further suppose that µµµ is ε-smooth.
Define

Tsufficient , min
D∈G

∑
C∈CD

[ ∑
i∈C∩HD

1

(∆ζ
i )

2

[
c1 log

c2

δ∆ζ
i

+
ρε

2

]

+ max
i∈C∩ND

{
2

(∆ζ
i )

2

[
c1 log

c2

δ∆ζ
i

+
ρε

2

]}]
(69)
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Algorithm 2 ζ-GRUB
Input: Regularization parameter ρ, Smoothness parameter ε, Error bound δ, Total arms n, Lapla-
cian LG, Sub-gaussianity parameter σ
t← 0
A = {1, 2, . . . , n}
t = 0
V0 ← ρLG
C(G)← Cluster-Identification(LG)
for C ∈ C(G) do
t← t+ 1
Pick random arm k ∈ C to observe reward rt,k
Vt ← Vt−1 + eke

T
k , and xt ← xt−1 + rt,kek

end for
while |A| > 1 do
t← t+ 1

β(t)← 2σ

√
14 log

(
2n(t+1)2

δ

)
+ ρε

k ← Sampling-Policy(t, Vt, A, C(G))
Sample arm k to observe reward rt,k
Vt ← Vt−1 + eke

T
k

xt ← xt−1 + rt,kek
µ̂µµt ← V −1

t xt

amax ← arg max
i∈A

[
µ̂it − β(ti)

√
[V −1
t ]ii

]
A←

{
a ∈ A | µ̂amax

t − µ̂at ≤ β(ta)
√

[V −1
t ]aa

+β(tamax
)
√

[V −1
t ]amaxamax

}
A← A/

{
a ∈ A | β(ta)

√
[V −1
t ]aa ≤ ζ

2

}
end while
return arg max

{
µi| i ∈ {a ∈ [n]|β(ta)

√
[V −1
t ]aa ≤ ζ

2} ∪A
}

where ∆ζ
i = max{∆i, ζ} for all suboptimal arms,HD and ND are as in Definition G.1, CD is the

set of connected components of subgraph D ∈ G and c1, c2 are constants independent of system
parameters. Then, with probability at least 1− δ, GRUB: (a) terminates in no more than Tsufficient
rounds, and (b) returns a ζ-best arm

Proof. From Lemma G.2, the sample complexity for each connected component C ∈ C can be given
as,

Tsufficient =

[ ∑
i∈C∩H

1

(∆ζ
i )

2

[
c1 log

c2

δ∆ζ
i

+
ρε

2

]
+ max
i∈C∩N

{
2

(∆ζ
i )

2

[
c1 log

c2

δ∆ζ
i

+
ρε

2

]}]
(70)

where, summing it over all the components C ∈ C, gives us the sample complexity for GRUB while
considering graph G.

Any subgraph D of graph G satisfies,

〈µµµ,LGµµµ〉 ≤ ε⇒ 〈µµµ,LDµµµ〉 ≤ ε (71)

As seen in Definition G.1, the influence factor is instrumental in deciding the competitive and
non-competitive sets, which further dictates the sample complexity bounds. Further, notice from
Lemma I.8 that the influence factor I(i,D) is not monotonic when considering subgraph D of graph
G. Hence considering a subgraph of G could potentially increase the number of non-competitive
arms and provide us with a tighter bound on the performance for GRUB.
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Hence Tsufficient can be made tighter by considering the minimum value over the entire set of subgraphs
G.

Note that, as in the case of GRUB, the ζ-GRUB algorithm’s performance automatically adapts to the
best possible subgraph in G.

H The Incomparability of the Graph Bandits problem with Linear Bandits

In this section, we demonstrate an example graph bandit problem that is cast as a linear bandit to
reveal the incomparability of these frameworks. A typical linear bandit problem is defined as follows:
Consider an n-armed linear bandit problem, each arm i ∈ [n] is associated with a feature vector
xi ∈ Rd, where d can be lower than n. In each round t, the learner chooses an action at = xi for
some i ∈ [n] and observes the reward yt = 〈at, θθθ〉+ ηt, where θθθ ∈ Rd is an unknown parameter and
the ηt is a subgaussian random noise with σ2 variance. Denote the arm with the best mean reward
with i∗, i.e. i∗ = arg maxi∈[n]〈xi, θθθ〉. The goal of the learner is to to output the index of the arm i∗

with probability 1− δ, δ > 0 in as few samples as possible.

Firstly, a n-armed bandit problem without any graph can be easily seen as linear bandits by associating
the canonical basis for Rn {ei}ni=1 as the feature vectors and the mean vector µµµ ∈ Rn as the unknown
reward vector. This provides up with the mean reward function for arm i ∈ [n] as 〈ei,µµµ〉 = µi.

In order to cast the graph bandit problem in a linear bandit framework, we need to associate every
arm index i with a feature vector xi and identify the unknown feature vector θθθ for the problem. We
achieve this by modifying the feature vectors {ei}ni=1 and the reward vector µµµ based on the graph
Laplacian LG.

Following is the information available at hand in the current graph bandit problem: we are provided
with an n-armed bandit with an unknown mean vector µµµ smooth on a graph G, i.e. 〈µµµ,LGµµµ〉 ≤ ε.
For this toy problem, we consider the graph G to be connected.

Let {νννi}ni=1 and 0 = λ1 < · · · < λn denote the eigenvectors and eigenvalues of the Laplacian LG
respectively. It can be easily seen that µµµ =

∑n
i=1 aiνννi for some ai ≥ 0 ∀i ∈ [n]. The reward

function of arm j is

〈ej ,µµµ〉 =

n∑
i=1

ai〈ej , νννi〉 = a1 +

n∑
i=2

ai〈ej , νννi〉

the second equality follows from the properties of graph Laplacian we know that ννν1 = 1n, is the
only eigenvector associated to 0 eigenvalue in a connected graph.

Without loss of generality we can assume a1 = 0 as a1 does not depend on the arm index j. Notice
that letting a1 = 0 is equivalent to having

∑n
i=1 µi = 0. Also, the graph constraint can be rewritten

as follows:

〈µµµ,LGµµµ〉 ≤ ε⇒
n∑
i=1

λia
2
i = 〈θθθ,θθθ〉 = ‖θθθ‖22 ≤ ε

where θθθ = (
√
λ1a1, . . . ,

√
λnan).

Using the above we can cast the graph bandit problem as the linear bandit problem with the mean
reward function of arm j expressed as

〈ej ,µµµ〉 =

n∑
i=2

θi√
λi
〈ej , νi〉 = 〈xj , θθθ〉

Hence, the new linear bandit problem is such that the set of arms is {xj}nj=1, the unknown parameter
is a vector θθθ, the expected reward of an arm is 〈xj , θθθ〉 and the unknown parameter satisfies the
constraint ‖θθθ‖22 ≤ ε.
We discuss below the drawbacks of casting a graph bandit problem into a linear bandit framework:

• The original best-arm identification is an n-armed problem and the recasted linear bandit
problem still has feature vectors with dimensionality n and hence no low-dimensional
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benefit of linear bandits is completely lost. Having a performance bound for any algorithm
for linear bandits which scales in n, the number of arms gives us no additional advantage.

• The above conversion to linear bandit setup only works when the graph G is connected.
Recasting problem setup with disconnected components require assumption of

∑
i∈C µi = 0

on individual connected components, which is unrealistic. The results of GRUB holds with
or without this assumption.

• Consider the corner case of ε = 0, the linear bandit problem setup derived becomes that of
arg maxi〈xi, θθθ〉 such that ‖θθθ‖ ≤ 0 which is only possible if ‖θθθ‖ = 0 and in this case we
can observe two interesting facts:

– If the graph G is completely connected then the problem is trivial, since

ε = 0⇒ 〈µµµ,LGµµµ〉 = 0⇒ (µi − µj)2 = 0 ∀i, j ∈ [n], i 6= j

This implies all arms are equal and optimal and the solution is trivial. Here the mean
reward function of all arms i is 〈xi, θθθ〉 = 0 since θ = 0 and hence gives the correct
output (any arm i).

– Suppose graph G has two connected components C1, C2, where Ck indicates the arm
indices in the connected component k. Further assume that µi = 1 ∀i ∈ C1, µi =
−1 ∀i ∈ C2. Considering the case of ε = 0 here gives us the following :

ε = 0⇒ 〈µµµ,LGµµµ〉 = 0⇒ (µi − µj)2 = 0 ∀i 6= j, i, j ∈ Ck, k = 1, 2

Here the mean reward function of all arms i is 〈xi, θθθ〉 = 0 since θ = 0 but this is
incorrect since not all arms are optimal.

Our graph bandit setup and the performance of GRUB is independent of all of these draw-
backs and provides us with a better sample complexity than vanilla best arm identification
algorithms.

I Supporting Results

This appendix is devoted to providing supporting results for many of the theorems and lemmas in the
paper.

I.1 Notation and Definition

Let {ti(T )}ni=1 (denoted as {ti}ni=1 for ease of reading) indicate the number of plays of each arm
until time T . Let X ∈ Rn×n be a matrix, then {λi(X)}ni=1 indicate the eigenvalues of matrix X in
an increasing order.

Let N(πππT ) =
∑T
t=1 eπte

T
πt be the diagonal counting matrix. Note that N(πππT ) can be written as

N({ti}ni=1) since the diagonal counting matrix only depends on the number of plays of each arm,
rather than the each sampling sequence πππT .

We next establish some properties of the influence function I.
Lemma I.1. Let D be an arbitrary graph with n nodes and let {ti}ni=1 be the number of times all
arms are sampled till time T . For each node j ∈ [n], the following are equivalent:

1

I(j,D)
= max∑

i∈Dj,i 6=j
ti=T
{[K(i,D)]jj} (A)

= max
k∈Dj ,

∑
i∈Dj,i 6=j

ti=T

{
[Vj({ti}i∈Dj , D)−1]jj − [Vj({ti}i∈Dj , D)−1]kk

}
(B)

= max∑
i∈Dj,i 6=j

ti=T

{
[Vj({ti}i∈Dj , D)−1]jj − min

k∈Dj
[Vj({ti}i∈Dj , D)−1]kk

}
(C)

= max∑
i∈Dj,i 6=j

ti=T

{
[Vj({ti}i∈Dj , D)−1]jj −

1

T

}
(D) (72)

where K(i,D) be defined as in Definition 4.2
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Proof. Let f(·, ·) denote the following:

f(i,D) = max∑
i∈Dj,i 6=j

ti=T
{[K(i,D)]jj}

We prove the rest by showing equivalence between (A), (B), (C) and (D).

• (A)⇔ (D) : A simple extension of Lemma I.3 to the case of disconnected clustered graph
D, ∀πππT ∈ U(T,Dj) we obtain,

Vj(πππT , D)−1 =
1

T
11T +K(π1, D) (73)

where K(π1, D) is as defined in Definition 4.2. Thus, we have the equivalence by explicitly
writing the diagonal element of eq (73),

[Vj(πππT , D)−1]jj −
1

T
= [K(π1, D)]jj (74)

Hence we have the equivalence as,

f(i,D) = max∑
i∈Dj,i 6=j

ti=T

{
[Vj({ti}i∈Dj , D)−1]jj −

1

T

}
(75)

• (C)⇔ (D) : Let {t∗i }i∈Dj denote the following:

{t∗i (j)}i∈Dj ∈ arg max∑
i∈Dj,i 6=j

ti=T

{
[Vj({ti}i∈Dj , D)]−1

jj −
1

T

}
(76)

From Lemma I.2, the optimal {t∗i (j)}i∈Dj occurs in U(j, T ), i.e. ∃{t∗i (j)}i∈Dj such that
t∗l (j) = T and t∗k(j) = 0 ∀k 6= l for some l ∈ Dj . Further by Lemma I.4,

min
k∈Dj

[Vj({ti}i∈Dj , D)−1]kk =
1

T
(77)

Hence {t∗i (j)}i∈Dj is also a solution for the following problem:

{t∗i (j)}i∈Dj ∈ arg max∑
i∈Dj,i 6=j

ti=T

{
[Vj({ti}i∈Dj , D)]−1

jj

− min
k∈Dj

[Vj({ti}i∈Dj , D)−1]kk

}
(78)

Hence we can conlcude that,

f(i,D) = max∑
i∈Dj,i 6=j

ti=T

{
[Vj({ti}i∈Dj , D)]−1

jj

− min
k∈Dj

[Vj({ti}i∈Dj , D)−1]kk

}
(79)

• (B)⇔ (C) :

Note that max
k∈Dj ,

∑
i∈Dj,i 6=j

ti=T
[Vj({ti}i∈Dj , D)−1]jj ] does not depend on arm node index

k ∈ Dj . Hence, the equivalence follows.

The resistance distance r(i, j) Definition 4.1 is independent of δ for all i, j ∈ [n] (The addition of
diagonal elements and subtraction of off diagonal elements removes the dependence on δ [5]).

Note that VT = NT + ρLG, hence V −1
T gives the psuedo-inverse of the Laplacian matrix for graph

G. We show in Lemma I.2 that the matrix R (denoting as R(δ) to explicitly show dependence
on δ) linked with V −1

T is independent of number of samples T . Since both matrix R and VT are
psuedo-inverse of the Laplacian LG. Thus we can conclude the following :

lim
δ→0

[R(δ)]ij −
1

δ
= lim
T→0

[V ({ti}ni=1, G)−1]ij −
1

T
(80)
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where T → 0 implies ti → 0 ∀i ∈ [n]. Further,
lim
δ→0

R(δ)ii +R(δ)jj −R(δ)ij −R(δ)ji

= lim
T→0

[V ({ti}ni=1, G)−1]ii + [V ({ti}ni=1, G)−1]jj

− [V ({ti}ni=1, G)−1]ij − [V ({ti}ni=1, G)−1]ji (81)
where T → 0 implies ti → 0 ∀i ∈ [n].

Since the equation (81) holds for ti → 0 for all i ∈ [n], computing the value of limit for one trajectory
should suffice for finding the value of the limit. Thereby, we provide an alternate equation for
obtaining the resistance distance r(i, j) by

r(i, j) = [K(π1 = i,D)]jj (82)
Note that [K(π1 = i,D)]ii = [K(π1 = i,D)]ij = [K(π1 = i,D)]ji = 0 from Lemma I.3). Thus
we can say from Definition 4.2,

f(i,D) =
1

I(j,D)

Hence proved.

Lemma I.2. Let D be a given graph with n nodes. For every node j ∈ D, let {t∗i (j)}i∈Dj denote
the following:

{t∗i (j)}i∈Dj ∈ arg max∑
i∈Dj,i 6=j

ti=T

{
[Vj({ti}i∈Dj , D)]−1

jj −
1

T

}
(83)

Then ∃{t∗i (j)}i∈Dj , l ∈ Dj such that t∗l (j) = T and t∗k(j) = 0 ∀k 6= l.

Proof. To simplify our proof, let graph D be connected. The proof for the case of disconnected
components is an extension of the connected graph case, by analysing each individual connected
component together.

If graph D is connected then Di = D. For the rest of the proof we sometimes denote V (πππT , D) as
V ({ti}ni=1, D) to make it more context relevant.

Let g : Rn → Rn×n be a partial function of V (πππT , D) as follows:
g({ti}ni=1) = V ({ti}ni=1, D) (84)

For all i ∈ [n], let ti = αiT such that
∑n
i=1 αi = 1. Then we can say that,

g({ti}ni=1) = g({αiT}ni=1)

=

n∑
i=1

αig({0, 0, . . . ti = T, . . . 0}) (85)

Using convexity of matrix invertibility [42] V (πππT , G)−1 satisfies,

g({ti}ni=1)−1 �
n∑
i=1

αig({0, 0, . . . ti = T, . . . 0})−1 (86)

Hence g(·)−1 is a convex function. Since we have the restriction as
∑n
i=1,i6=j ti = T . We can say

that,

arg max∑
i∈Dj,i 6=j

ti=T

{
[V ({ti}ni=1, D)]−1

jj −
1∑n
i=1 ti

}
= arg max∑

i∈Dj,i 6=j
ti=T

[V ({ti}ni=1, D)]−1
jj

= arg max∑
i∈Dj,i 6=j

ti=T

〈ej , [V ({ti}ni=1, D)]−1ej〉

= arg max∑
i∈Dj,i 6=j

ti=T

〈ej , g({ti}ni=1)−1ej〉 (87)
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Since g(·)−1 is convex, for a convex function the maximization over a simplex happens at one of the
vertices. Hence the max happens when ti = T and tk = 0 ∀k 6= i.

Hence proved.

Lemma I.3. Let G be a given connected graph of n nodes and ti be the number of samples of each
arm i. Then ∀πππT ∈ U(T ),

V (πππT , G)−1 =
1

T
11

T +K(π1, G) (88)

where, 1 ∈ Rn is a vector or all ones and K(π1, G) ∈ Rn×n is the matrix defined in Definition 4.2.

Proof. Let I be an identity matrix of dimension n × n. We prove the result by showing that,
∀πππT ∈ U(T ), V (πππT , G)−1V (πππT , G) = I ,

V (πππT , G)−1V (πππT , G)

=

(
1

T
11

T +K(π1, G)

)( T∑
t=1

eπte
T
πt + ρLG

)

=

(
1

T
11

T +K(π1, G)

)(
Teπ1e

T
π1

+ ρLG
)

= 1eTπ1
+ TK(π1, G)eπ1

eTπ1
+ ρK(π1, G)LG (89)

From Definition 4.2, K(π1, G)eπ1
eTπ1

= 0 and 1eTπ1
+ ρK(π1, G)LG = I implying that

V (πππT , G)−1V (πππT , G) = I .

Hence proved.

Lemma I.4. Let G be any connected graph and πππT ∈ U(T,G). Then,

min
j∈[n]
{[V (πππT , G)−1]jj} =

1

T
(90)

Proof. From Definition 4.2, K(π1, G) satisfies

K(π1, G)LG =
1

ρ

(
I − 1eTπ1

)
Observe that 1eTi is a rank 1 matrix with eigenvalue 1 and eigenvector ei and Identity matrix I is of
rank n with all eigenvalues 1 and eigenvectors {ei}ni=1. Hence

(
I − 1eTπ1

)
is a rank n− 1 matrix

with rest nonzero eigenvalues as 1. Since the graph G is connected, λ1(LG) = 0 and λ2(LG) > 0.
The eigenvector corresponding to λ1(LG) is 1, the all 1 vector.

Given ρ > 0, we can conclude,

K(π1, G)LG � 0 s.t. rank(K(π1, G)LG) = n− 1 (91)

Hence, in order to satisfy eq. (91), K(π1, G) � 0 and rank(K(π1, G)) ≥ n− 1. By lower bounds
on Rayleigh quotient we can conclude,

〈ej ,K(π1, G)ej〉 = [K(π1, G)]jj ≥ 0 ∀j ∈ [n] (92)

From Lemma I.3, [K(π1, G)]jj = [V (πππT , G)−1]jj − 1
T implying that [V (πππT , G)−1]jj ≥ 1

T . From
Definition 4.2 it can be seen that [K(π1, G)]π1π1

= 0 and hence [V (πππT , G)−1]π1π1
= 1

T which
concludes the proof.

Lemma I.5. Given a connected graph G, the following bound holds for all the diagonal entries of
[V (πππT , G)−1]ii for i ∈ [n]:

[V (πππT , G)−1]ii ≤ 1 (ti = 0)

(
1

ρI(i,G)
+

1

T

)
+ 1 (ti > 0) max

{
1

ti + ρI(i,G)
2

,
1

ti + T
2

}
(93)

32



Proof. From Definition 4.2 of I(·,G) and Lemma I.1, Breaking the lemma statement into cases:

• Unsampled Arms : From Lemma I.1

1

I(j,G)
= max∑

i∈Gj,i 6=j
ti=T

{
[Vj({ti}i∈Gj , G)−1]jj −

1

T

}
∀j ∈ [n] (94)

Thus for any unsampled arm j,

[V (πππT , G)]−1
jj ≤

(
1

I(j,G)
+

1

T

)
(95)

• Sampled Arms : Since the matrix V (πππT , G) depends only on the final sampling distribution
{ti}ni=1 rather than the sampling path πππT . Consider a sampling path such that πt 6= j for
t ≤ T − tj and πt = j for T − tj ≤ t ≤ T .

Assuming such a sampling path πππT , after πππT−tj samples,

[V (πππT−tj , G)−1]jj ≤
1

T
+

1

I(j,G)
(96)

Then by the Sherman-Morrison rank 1 update identity9,

1

[V (πππT , G)−1]jj
=

1

[V (πππT−tj , G)−1]jj
+ tj

[V (πππT , G)−1]jj =
1

tj + 1
[V (πππT−tj ,G)−1]jj

≤ 1

tj + 1(
1

I(j,G)
+ 1
T−tj

)
Hence we have the bound on [V (πππT , G)−1]jj as follows:

[V (πππT , G)−1]jj ≤ max

{
1

tj + I(j,G)
2

,
1

tj +
T−tj

2

}
(97)

Hence proved.

Lemma I.6. LetD be a graph with n nodes and k disconnected components. If each of the connected
components {Ci(D)}ki=1 is a complete graph then ∀ j ∈ [n],

I(j,D) =
|C(j,D)|

2
(98)

Proof. Let D be a complete graph (k = 1), πππT ∈ U(T ) and ρ = 1. Then,

V (πππT , G)−1 =
1

T
11

T +K (99)

where 1 ∈ Rn is a vector or all ones and K ∈ Rn×n is a matrix given by,

Kπ1π1
= 0, Kjj =

2

n
∀j ∈ [n]/{π1}

Kkπ1
= 0, Kπ1j = 0, Kjk =

1

n
∀j, k ∈ [n]/{π1}, j 6= k

The form of V (πππT , G)−1 in eq.(99) can be verified by V (πππT , G)−1V (πππT , G) = I .

The final statement of the lemma can be obtained by considering this analysis to just the nodes within
a connected component of a diconnected graph G and Lemma I.1.

9Hager, W. (1989). Updating the Inverse of a Matrix. SIAM Rev., 31, 221-239.
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Lemma I.7. LetD be a graph with n nodes and k disconnected components. If each of the connected
components {Ci(D)}ki=1 is a line graph then ∀ j ∈ [n],

I(j,D) >
1

|C(j,D)|
(100)

Proof. Let D be a complete graph (k = 1), πππT ∈ U(T ) and ρ = 1. Then,

V (πππT , G)−1 =
1

T
11

T +K (101)

where 1 ∈ Rn is a vector or all ones and K ∈ Rn×n is a matrix given by,

Kπ1π1
= 0, Kjj = d(π1, j) ∀j ∈ [n]/{π1},

Kkπ1
= 0, Kπ1j = 0,

Kjk = min{d(π1, j), d(π1, k)} ∀j, k ∈ [n]/{π1}, j 6= k

The form of V (πππT , G)−1 in eq.(101) can be verified by V (πππT , G)−1V (πππT , G) = I .

The final statement of the lemma can be obtained by considering this analysis to just the nodes within
a connected component of a diconnected graph G and Lemma I.1.

Lemma I.8. Let A = ([n], E) be any graph and let e ∈ E be an edge of graph A. Let B =
([n], E − {e}) be a subgraph of A with one edge removed. Then the following holds for all non-
isolated nodes i in B:

• If |C(A)| = |C(B)|,
I(i, A) ≥ I(i, B)

• If |C(A)| < |C(B)|,
I(i, A) ≤ I(i, B)

Proof. From Lemma I.1, for any graph D, I(·, ·) satisfies,
1

I(j,D)
= max
k∈Dj ,

∑
i∈Dj

ti=T

{
[Vj({ti}i∈Dj , D)−1]jj

−[Vj({ti}i∈Dj , D)−1]kk
}
∀j ∈ [n] (102)

Case I : |C(A)| = |C(B)|
The edge set of B is smaller than edge set of A. Hence, from Lemma I(i, A) ≥ I(i, B)

Case II : C(A) < C(B) In this case, |Bi| ≤ |Ai|. Hence the max is over a smaller set of options, we
can conclude that I(i, A) ≤ I(i, B). Hence proved.

Given a graph D, we define a class of sampling policies U(T,D) as follows,
Definition I.9. Let U(T,D) denote the set of sampling policies,

U(T,D) = {πππT | ∃l ∈ D s.t. πt = l ∀t ≤ T}
Lemma I.10. Let G be the given graph and sampling policy πππT has been played for T time steps,
then VT satisfies the following structure,

V (πππT , D) = diag([V1, V2, . . . , Vk(G)]) (103)

where Vi depends on the connected component Ci ∈ CD of the graph and the number of samples of
the arms within the connected component {tj}j∈Ci .

Proof. Rewriting the definition of V (πππT , D),

V (πππT , D) ,
T∑
t=1

eπte
>
πt + ρLD

= N({ti}ni=1) + LD (104)
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Both component matricesN({ti}ni=1) (diagonal matrix) and LD (Laplacian matrix of a graph) adhere
to a block diagonal structure and hence V (πππT , D) matrix also adheres to a block diagonal structure
analogous to LD. The block diagonal structure in LD is dictated by connected components of graph
D.

The following lemma establishes the invertibility of V (πππT , G) for a connected graph and T > 1 :
Lemma I.11. For a connected graph G, V (πππ1, G) is invertible, but V (πππ0, G) is not invertible.

Proof. Since the graphG is connected, λ1(LG) = 0 and λ2(LG) > 0. The eigenvector corresponding
to λ1(LG) is 1, the all 1 vector. At time T = 0, V (πππT , G) = LG and hence V (πππT , G) is positive
semi-definite matrix with one zero eigenvalues.

Let arm i be pulled at T = 1, i.e. π1 = i, then the corresponding counting matrix is a positive semi
definite matrix of rank one with the eigen value λn(N) = 1 for the eigenvector ei.

Observe that eTi 1 > 0. Also, NT and LG are positive semi-definite matrices with ranks 1 and n− 1
respectively. The subspace without information (corresponding to the direction of zero eigenvalue)
for matrix LG is now provided by N(πππ1) and hence λmin(V (πππ1, G)) > 0 making it invertible.

Lemma I.12. Let G = ([n], EG, A), H = ([n], EH , A) are two graphs with n nodes such that
EG ⊇ EH . Then, assuming invertibility of [V (G,T )−1] and [V (H,T )−1],

[teff,i]G ≥ [teff,i]H ∀i ∈ [n], T > k(G) (105)

where ∀i ∈ [n], [teff,i]G, [teff,i]H indicates the effective samples with graph G and H respectively.

Proof. Given graphs G = ([n], EG), H = ([n], EH) satisfy EG ⊇ EH .

The quadratic form of Laplacian for the graph G,H is given by,

xLGx =
∑

(i,j)∈EG

(xi − xj)2

xLHx =
∑

(i,j)∈EH

(xi − xj)2

Since EG ⊇ EH ,

xLGx ≥ xLHx ∀ x ∈ Rn

⇒ LG � LH

Further, provided a sampling policy πππT , we can say that,

V (πππT , G) � V (πππT , H)

For the number of samples T sufficient to ensure invertibility of V (πππT , H), we have

V (πππT , G)−1 � V (πππT , H)−1

xTV (πππT , G)−1x ≤ xTV (πππTH)−1x ∀x ∈ Rn

[V (πππT , G)−1]ii ≤ [V (πππT , H)−1]ii (taking x = ei)

1

[V (πππT , G)−1]ii
≥ 1

[V (πππT , H)−1]ii

Hence from the definition of effective samples 3.1, it is clear that for any i ∈ [n],

[teff,i]G ≥ [teff,i]H (106)

Hence proved.

Lemma I.13. Let effective samples teff,i be as is defined in Definition 3.1 and let πππT denote a cyclic
sampling policy for T > k(G), then the infinite sum

∑∞
T=k(G)+1 t

−2
eff,i is bounded. In fact,

∞∑
T=k(G)+1

t−2
eff,i < n

(
2(n− 1)

ρ

)2

+
nπ2

6
(107)
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Proof. We first prove the lemma statement for connected graphG and then go towards a more general
graph G. From Lemma D.1,

teff,i ≥ ti + min{ρI(i, G), T − ti}

if T − ti ≤ ρI(i, G), then teff,i ≥ T+ti
2 ≥ T

2 . For the reverse case of T − ti ≥ ρI(i, G),
teff,i ≥ ti + ρI(i,G)

2 ≥ ti + ρ
2(n−1) (since I(i, G) ≥ 1

n−1 by Remark ??).

Since πππT is a cyclic sampling policy, hence ti increases by 1 at-least once every n samples. Thus, we
can upperbound the infinite sum as,

∞∑
T=1

1

t2eff,i
≤
∞∑
T=1

1(
ti + ρ

2(n−1)

)2

≤ n
(

2(n− 1)

ρ

)2

+ n

∞∑
ti=1

1

t2i

< n

(
2(n− 1)

ρ

)2

+
nπ2

6
(108)

Hence proved.

J Better sampling strategies

Theorem 4.4 established a baseline w.r.t. sampling protocol by solving Tsufficient for naive cyclic
sampling policy (a sampling policy which doesn’t exploit the graph properties). Note that, even if
the sampling policy doesn’t utilize any graph properties, the similarity graph is still being utilized in
computing the mean estimate and the confidence widths. For the safe elimination of suboptimal arms,
the ultimate goal of GRUB is to shrink the confidence bounds βi

√
(teff,i)−1 as quickly as possible.

Accordingly, a few intelligent sampling policies that exploit the graph structure of the problem is
given as follows:

• Marginal variance minimization (MVM): Since picking any arm impacts the confidence
widths of all arms in it’s connected component, we pick the arm with the maximum variance.
Specifically, l = arg min

i∈A
teff,i = arg max

i∈A
[V −1
T ]ii, where A is the set of indices of the arms

under consideration.

• Joint variance minimization – nuclear (JVM-N): This variant is inspired from the
concept of V-optimality [22]. This policy aims to select the arm that minimizes `2 regression
loss of the estimated vector µ̂µµ, i.e. the confidence interval across all remaining arms in A.
Specifically, l = arg min

i∈A
‖(VT + eie

T
i )−1‖∗

• Joint variance minimization – operator (JVM-O). Taking inspiration from Σ-
optimality [40, 38] the next policy can be stated as, l = arg min

i∈A
‖(VT + eie

T
i )−1‖op =

arg max
i∈A

‖Rowi(V
−1
T )‖22

1+[(V −1
T )ii]

The main objective of sampling policies is to decrease the value of [V −1
T ]ii for every arm i as fast

as possible. The notion of decrease leads to different sampling policies for GRUB. The algorithm
chooses the arm which maximizes this notion of decreases.

The objective of the sampling policy Joint variance minimization – operator (JVM-O) is equiva-
lent to:

max
k∈A

∑
j∈[n]

|(V −1
T )k,j | − |

(
VT + eke

T
k

)−1

k,j
| (109)

Using Sherman-morrison rank 1 update we split the summation into different cases:
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Figure 2: (Best seen in color) Performance of GRUB with using various sampling protocols for SBM
((p, q) = (0.9, 5e− 3)) [Left] and BA (m = 2) [Right]. The UCB method without graph information
is significantly slower compared to the graph-based variants. Note that for these toy datasets, the
sampling algorithm used does not alter the results too much.

• For j = k,

|〈ekV −1
T ek〉| − |〈ek

(
VT + eke

T
k

)−1
ek〉| =

‖ek‖4V −1
T

1 + ‖ek‖2V −1
T

(110)

• For all connected-nodes of j ∈ Nk,

|〈ekV −1
T ej〉| − |〈ek

(
VT + eke

T
k

)−1
ej〉| =

〈ej , ek〉2V −1
T

1 + ‖ek‖2V −1
T

(111)

• For all other non-connected j /∈ Nk, i 6= k,

|〈ekV −1
T ei〉| − |〈ek

(
VT + eke

T
k

)−1
ei〉| = 0 (112)

Hence the sampling policy decides on the arm to sample based on the following optimization problem,∑
j∈[n]

|(V −1
T )k,j | − |

(
VT + eke

T
k

)−1

k,j
| =
‖ek‖4V −1

T

+
∑
j∈Nk〈ei, ek〉

2
V −1
T

1 + ‖ek‖2V −1
T

=
‖Rowk(V −1

T )‖22
1 + [(V −1

T )kk]

Hence we try to find the arm k within the remaining arms in consideration which maximizes
‖Rowk(V −1

T )‖22
1+[(V −1

T )kk]
.

K Additional Experiments

Synthetic Data : Setup 2 We consider an n-armed bandit setup with the aim of finding the best arm.
The number of arms scale from n = 50 to 200 in steps of 50. We consider 2 cases: G is a Stochastic
Block model(SBM) with parameters (p, q) = (0.9, 1e−4) and G is a Barabási–Albert(BA) graph
with parameter m = 2, both containing 10 clusters. We run every setup for 20 runs and record the
stopping time for all runs.

As can be seen in 1, all graph algorithm (GRUB with different sampling policies) the standard UCB
based best-arm identification algorithm. Within the different GRUB, different sampling policies
exploit the graph infromation in distinct ways, leading to a different in their performance. GRUB
(cyclic sampling based) is outperformed by all other sampling based GRUB methods.

Synthetic Data: Setup 3 We consider the setup whereGwith n = 100 arms consists of 10 connected
components with 10 arms per cluster. We consider 2 cases: G is a Stochastic Block model(SBM)
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Figure 3: (Best seen in color) Performance of GRUB with using various sampling protocols for SBM
((p, q) = (0.9, 5e− 3)) [Left] and BA (m = 2) [Right]. The UCB method without graph information
is significantly slower compared to the graph-based variants. Note that for these toy datasets, the
sampling algorithm used does not alter the results too much.

Figure 4: (Best seen in color) Performance of GRUB using different sampling protocols for Github
social graph (left) and LastFM graph (right). With no graph information, UCB requires orders of
magnitude more samples compared to policies that use explicitly graph information. The cycic
sampling policy is not as competitive on real world datasets

with parameters (p, q) = (0.9, 0.0005) and G is a Barabási–Albert(BA) graph with parameter m = 2.
Results are provided in Figure 3

Real Data: We use graphs from SNAP [34] for the experiments involving real world graphs. We
sub-sample the graphs using Breadth-First Search (to retain connected components) to generate
the graphs for our experiments. We use the LastFM [46], subsampled to 229 nodes and Github
Social [45] subsampled to 242 nodes.

In all the experiments, it is evident that GRUB with any of the sampling policies outperform UCB
algorithm [32], which does not leverage the graph. Further within the various sampling policies,
MVM sampling policy seems to outperform other sampling policies (Figure 4). For both Github and
LastFM datasets, the MVM policy obtains the best arm in∼ 300 rounds compared to traditional UCB
that takes ∼ 4500 rounds. A rigorous theoretical characterization of the above sampling policies is
an exciting avenue for future research. We refer the reader to Appendix A for a discussion on the
results of the paper, potential extensions, and broader impacts.

L Code Availability

The full code used for conducting experiments can be found at the following Github repository.
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