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Bandits with Graph Information

Multi-armed bandits (MAB) has emerged as an important framework to model decision making

and search under uncertainty. However, in manymodern-day applications such as drug discovery,

recommender systems and policy evaluations, traditional MAB methods are rendered ineffective

due to following challenges

Figure 1. Bandits with graph information

Challenges:

Enormous options (arms) to evaluate.

Split second decision making.

Limited methods to incorporate structure.

Inaccurate structural information.

This work incorporates approximate graph infor-

mation in existing MAB framework to tackle

aforementioned challenges.

Potential sources of approximate graph infor-

mation include but are not limited to social net-

works, preference similarity, etc.

Problem Framework and Statement

Problem Framework:

Consider a n-armed bandit problem with rewards as follows:

ri
t = µi + ηt, ∀i ∈ [n], ηt is σ-sub-Gaussian, ∀t ∈ N

Further, consider the availability of graph information in the form of similarity graph G such

that,

‖µµµ‖2
G , 〈µµµ, LGµµµ〉 =

∑
{i,j}∈EG

Aij(µi − µj)2 ≤ ε

If the above is satisfied, we say that the arm rewards are ε-smooth with respect to a graph G.

Problem Statement:

Design a sampling policy πt : t → [n] based on the past measurements to find the following:

P1: The best arm i∗ such that i∗ = arg max
i∈[n]

µi.

P2: An ζ-approximate best arm i′ such that µi∗ − µi′ ≤ ζ .

Figure 2. Bandit Flowchart

GRUB Algorithm

GRUB (GRaph based Upper confidence Bound) algorithm incorporates graph information in

to UCB strategy.

Graph information helps in forming mean and confidence estimates of the arms that have not

been sampled.

The GRUB algorithm proceeds in three major steps as shown in the flow graph:

1. Parameter Estimation: At each step GRUB computes an estimate of mean and confidence

bounds of all arms. The mean estimate at any time T is given by:

µ̂µµT = arg min
µµµ∈Rn


 T∑

t=1
(rt,πt − µπt)

2

 + ρ〈µµµ, LGµµµ〉

 , (1)

2. Arm Elimination: At any time t, arm a is retained only if it’s upper confidence bound is greater

than the best lower confidence bound.

3. Sampling Strategy: Use intelligent (incorporating graph information), random or cyclic policy

to sample the next arms.

Theoretical Results

Theorem 1 [GRUB Sample Complexity (Informal)]

Consider n-armed bandit problem with ε-smooth mean vector µµµ w.r.t. graph G. Then, GRUB

succeeds in finding the best armwith high probability after no more than Tsufficient rounds given

as follows

Tsufficient =
∑

j∈clusters

∑
i∈Hj

O

(
1

∆2
i

)
+ max

i∈Nj

O

(
1

∆2
i

) , (2)

where Hj and Nj indicate Competitive and Non-competitive arms in cluster j.

Novelty

Figure 3. Impact of sampling an arm

Sampling any arm provides additional insights

into connected arms due to the presence of

graph structure. This is quantified using the no-

tion of Resistance Distance r(·, ·) on graph G,

where resistance distance between (i, j) w.r.t.
graph G is denoted by,

rδ,G(i, j) = Rii + Rjj − Rij − Rji

where R ,
(

LG + δ11T
)†
, † denotes the

Moore-Penrose inverse, LG is the Laplacian of

graph G, and 1 ∈ Rn is the vector of all 1’s.

Theorem 2 [Lower Bound (Informal)]

Consider n-armed bandit problem with ε-smooth mean vector µµµ w.r.t. graph G consisting only

of isolated cliques. Then any δ-PAC algorithm will need at least Tnecessary steps to terminate

given as follows, provided δ ≤ 0.1

Tnecessary =
∑

C∈CG/C∗
min
j∈C

{
4σ2 log 5

(∆j −
√

ε)2

}
+
∑

j∈C∗/1

4σ2 log 5
∆2

j

(3)

Intuitive examples

Figure 4. Graph A Figure 5. Graph B

Graph A : Clustered graph with isolated optimal arm. In the best case scenario, sample

complexity of the bandit problem scales as O(# clusters).

Graph B : Star graph with optimal arm at the center. In the best case scenario, sample

complexity of the bandit problem scales as O(# arms).

Experimental Results
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Figure 6. Performance of GRUB with using various sampling protocols for Github social graph [Left] and for SBM

(m = 2) [Right]. The UCB method without graph information is significantly slower compared to the graph-based

variants.

FutureWork

Extension of theoretical results to account for improved sampling policies.

Misspecifications with respect to graph G and smoothness parameters ε.

Faster mean estimation by matrix inversion coupled with spectral sparsification of the graph
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