
Selected Topics in Constrained Optimization

A Project report

submitted by

PARTH K. THAKER

in partial fulfilment of the requirment for the award of the degree

of

BACHELOR OF TECHNOLOGY AND MASTER OF
TECHNOLOGY

DEPARTMENT OF ELECTRICAL ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY MADRAS.

July 2016

THESIS CERTIFICATE

This is to certify that the thesis titled Selected Topics in Constrained Optimization,

submitted by Parth K. Thaker, to the Indian Institute of Technology, Madras, for the

award of the degree of Bachelor of Technology and Master of Technology, is a bona

fide record of the research work done by him under our supervision. The contents of

this thesis, in full or in parts, have not been submitted to any other Institute or University

for the award of any degree or diploma.

Prof. Radha Krishna Ganti
Research Guide
Professor
Dept. of Electrical Engneering
IIT-Madras, 600 036

Place: Chennai
Date: 4th July 2016

ACKNOWLEDGEMENTS

I would like to thank my guide Prof. Radha Krishna Ganti for giving me a chance

to work with him on a topic of my interest. His constant support and freedom on

the research topic was something which helped me get a peak into a researcher’s life.

Even in his busy schedules, he used to heard my thoughts and give comments on the

same. My dual degree project period wouldn’t have been this much fruitful without his

support.

I would like to thank all of the current and past members of NSS lab whose constant

support and intellectual discussion led me to a great experience throughout out my Dual

degree project time.

i

ABSTRACT

KEYWORDS: Constrained optimization ; Projected gradient descent; Rank Pre-

serving Flow; Matrix Optimization.

Recently, due to the increasing size of the data matrices, it has become more and more

computationally expensive to operate of such matrices. We suggest some additional

thoughts as to how to reduce this computational complexity.

First, we suggest the possibility of cutting down on the number of projection operation

in a normal constrained optimization setting and thereby cutting down on some of the

vary taxing operations on matrices. We also indicate the benefits of limitations of this

approach

Second, we more to a specific notorious constraint i.e. rank constraint. We study the

minimization of function f(X) over the set of all n×mmatrices when we are supposed

to satisfy a constraint rank=r. We propose a algorithm on the lines of Factored Gradient

descent (FGD) and show its theoretical convergence and simulation results.

ii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS i

ABSTRACT ii

LIST OF TABLES vi

LIST OF FIGURES vii

ABBREVIATIONS viii

NOTATION ix

1 Introduction 1

1.1 Background concepts . 1

1.1.1 Low Rank Matrix Completion 2

1.1.2 Semi-definite Optimization 2

1.1.3 Cholesky factorization . 3

2 Skipping in Projected Gradient Descent 4

2.1 Projection . 4

2.2 Projected Gradient Descent . 4

2.2.1 Origin of problem . 5

2.2.2 Skipping between projections 6

2.2.3 Simulation 1 . 7

2.2.4 Possible Workaround . 9

2.3 Limitations . 10

2.4 Possible Future Extensions . 10

3 Rank Preserving Flow 12

3.1 Symmetric matrices . 12

iii

3.1.1 Tangent Space . 12

3.1.2 Rank preserving flow . 13

3.2 Ricatti Flow . 13

3.2.1 Riccati – First form . 13

3.3 Possible Work Direction . 15

4 Factored Gradient Descent 16

4.1 Problem Structure . 16

4.1.1 Major Problem . 16

4.2 Alternate approach . 17

4.2.1 Benefits . 17

4.3 Update Algorithm . 18

4.4 Relation with Riccati Flow . 19

5 Generalised Factored Gradient Descent 20

5.1 Problem Structure . 20

5.2 Major Improvements . 21

5.3 Theoretical Analysis . 21

5.4 Descent Algorithm . 24

5.4.1 W update . 24

5.4.2 H update . 25

5.4.3 X update . 26

5.4.4 Simulation 2 . 27

5.5 Recent advancement . 27

5.6 Possible Future Extensions . 28

6 Python Code for simulation 1 30

7 Python Code for simulation 2 33

A Convergence in W domain 36

B Convergence in H domain 38

iv

C Convergence in X Domain 40

LIST OF TABLES

vi

LIST OF FIGURES

1.1 Low rank completion problem . 2

2.1 Log Error plot . 7

2.2 Log Error plot–Tail . 8

5.1 Plot of function value with the proposed algorithm 27

5.2 Plot of the rank of matrix throughout the simulation 28

5.3 Plot of ||W ||2 and ||H||2 throughout the simulation 28

vii

ABBREVIATIONS

IITM Indian Institute of Technology, Madras

SVD Singular Value decomposition

ADMM Alternate dimension method of multipliers

PSD Positive Semi definite

PGD Projected gradient descent

FGD Factored gradient descent

viii

NOTATION

πQ(.) Projection Operator on set Q, m
minx minimization operation
χ Constrained set
rank(.) Rank of a matrix (number of non-zero eigenvalues)
Xij (i, j)th element of matrix X
X � 0 PSD constraint (all eigenvalues are non-zero)
LT Transpose of a matrix L
L∗ Conjugate transpose of matrix L
Rn×m Entire matrix space with dimension n×m
∝ Proportional
O(.) Complexity notation
QU Rotation matrix
X+ Next update step
∇(.) First order differentiation
∇2(.) Second order differentiation
||X||2 2-norm of matrix X

ix

CHAPTER 1

Introduction

Machine learning and computational statistics problems involving large datasets have

proved to be a rich source of interesting and challenging optimization problems in recent

years. The challenges arising from the complexity of these problems and the special

requirements for their solutions have brought a wide range of optimization algorithms

into play.

We start by briefly surveying the application space, outlining several important anal-

ysis and learning tasks, and describing the contexts in which such problems are posed.

We then take one optimization approaches that is proving to be relevant which deals

with Constrained Optimization. We also discuss parallel variants of some of these ap-

proaches. Various areas where we face constrained Optimization are given below

1.1 Background concepts

The basic framework of Constrained Optimization is given by the following problem

formualation,

min
x∈χ

f(x)

where χ is the constrained set.

Another way of representing the same is as follows,

min f(x)

subject to gi(x) = ci fori = 1, 2, . . . , n

hi(x) ≥ dj forj = 1, 2, . . . ,m

where gi(x) = ci for i = 1, . . . , n and hj(x) ≥ dj for j = 1, 2, . . . ,m are constraints

that are required to be satisfied

1.1.1 Low Rank Matrix Completion

Often also known as the Netflix problem, one of the variants of the matrix comple-

tion problem is to find the lowest rank matrix X , which matches the matrix M , which

we wish to recover, for all entries in the set E of observed entries.The mathematical

formulation of this problem is as follows:

min rank(X)

subject to Xij = Mij ∀i, j ∈ E

Figure 1.1: Low rank completion problem

1.1.2 Semi-definite Optimization

Sometimes in Matrix Optimization there are situation when one needs the optimal so-

lution to have only non negative eigenvalues and thus we get the following constrained

Optimization problem,

min f(X)

subject to X � 0

2

1.1.3 Cholesky factorization

The Cholesky decomposition of a Hermitian positive-definite matrix A is a decomposi-

tion of the form

A = LL∗ (1.1)

where L is a lower triangular matrix with real and positive diagonal entries, and L∗

denotes the conjugate transpose of L. Every Hermitian positive-definite (PSD) ma-

trix (and thus also every real-valued symmetric positive-definite matrix) has a unique

Cholesky decomposition(Golub, 1996, p. 143), (Horn and Johnson, 1985, p.407).

If the matrix A is Hermitian and positive semi-definite, then it still has a decompo-

sition of the form A = LL∗ if the diagonal entries of L are allowed to be zero(Golub,

1996, p. 147).

When A has real entries, L has real entries as well and the factorization may be

written A = LLT (Horn and Johnson, 1985, p. 407) The Cholesky decomposition is

unique when A is positive definite; there is only one lower triangular matrix L with

strictly positive diagonal entries such that A = LL∗. However, the decomposition need

not be unique when A is positive semi-definite.

The converse holds trivially: ifA can be written as LL∗ for some invertible L, lower

triangular or otherwise, then A is Hermitian and positive definite.

3

CHAPTER 2

Skipping in Projected Gradient Descent

In the case of constrained minimization problem (min f(x) where x ∈ Q), we need to

consider the projection to the convex set Q. So let us understand the ’projection’ first

2.1 Projection

Projection of a point x0 to the set Q is defined as,

πQ(x0) = argmin ||x− x0||, x ∈ Q (2.1)

i.e. projection of a point x0 to the closed and convex set Q is the closed point, in the

sense of the Euclidean norm, on the set Q.

Some of the interesting properties of projection operator are as follows:

• Let Q be a closed and convex set. Then ∃ a unique projection πQ(x0)

• For any x ∈ Q, ||x− πQ(x0)||2 + ||x0 − πQ(x0)||2 ≤ ||x− x0||2

• From the above point it follows that ||x − πQ(x0)|| ≤ ||x − x0||, thus projection
is a non-expansive operator.

2.2 Projected Gradient Descent

A big part of convex optimization is based on working out clever fixed-point equations

verified by the minimizers and to then apply a fixed-point iteration. In the case of con-

strained optimization case it leads to the following algorithm.

The Projected Gradient Descent(PGD) generates iterative sequence {xk} by the follow-

ing equation,

xk+1 = πQ(xk − ηk∇f(xk)) (2.2)

where πQ is the projection operator on the constraint set Q and ηk is the step size.

χ
xk

xk − η∇f(xk)

xk+1

Roughly speaking, assuming that the ηk are picked sensibly and under some regularity

conditions on the problem, the method enjoys a rate (f(xk)− f(x∗)) = O(
√
k).

This convergence with the square root of the number of iterations is actually a standard

result for gradient-descent type methods.

2.2.1 Origin of problem

With the over increasing databases, the optimization operations need to become more

and more efficient so as to counter the ever increasing size of the datasets.

If we look at the following constrained optimization problem

min
X∈Rn×m

f(X)

s.t rank(X) ≤ k

where k ≤min{m,n}

The most primitive approach for solving question of this form would be to implement

a projection gradient descent algorithm.

For each step of the projection required in projected gradient descent, we need to do

Singular Value Decomposition of matrix at each step in order to maintain the rank con-

straint.

5

Singular Value decomposition

the Singular Value Decomposition (SVD) is a factorization of a real or complex matrix.

Formally, singular value decomposition of a m× n real or complex matrix M is a fac-

torization of the form UΣV ∗, where U is a m×m real or complex unitary matrix, Σ is

a m × n rectangular diagonal matrix with non-negative real numbers on the diagonal,

and V is a n×n real or complex unitary matrix. The diagonal entries σi of Σ are known

as singular values of M.

Optimal cost of calculating a SVD operation is O(min{m2n, n2m}). So as the size of

the matrix increases, projected gradient descent takes more and more time to compute

each step.

This is just one of the many examples as to where projected gradient descent becomes

inadequate as the data matrix starts scaling.

2.2.2 Skipping between projections

Suppose the following happens:

xk → xk − ηk∇f(xk) Time taken = 0.001s

xk − ηk∇f(xk) → xk+1 = πQ(xk − ηk∇f(xk)) Time taken = 10s

So, we what if we could skip a projection step. That is, what if we do projection

every alternate step. The update equation will look something like this,

yk = xk − ηk∇f(xk)

xk+1 = πQ(yk − ηk∇f(yk))

Now we can continue this and have a projection step every three step. The update

6

equation of the same will look something like this,

yk = xk − ηk∇f(xk)

zk = yk − ηk∇f(yk)

xk+1 = zk − ηk∇f(zk)

So we term the number of skips of the as Frequency.

2.2.3 Simulation 1

Objective Function

The function we used for simulation is a general elliptical function given by,

min
(x,y)∈χ

3x2 + 5xy + 4y2 − 2x− 4y + 27 (2.3)

where χ was tried for two different sets χ : y = 0 and χ : x2 + y2 = 1.

Log Error Plot

Figure 2.1: Log Error plot

In the above figure, the y axis represent the log of error where the error is defined as

7

follows:

Error(x) = f(x)− f(x∗) (2.4)

where f(x∗) is the unconstrained minimum.

A closer look towards the tail of the above plot, we get the following plot, Thus there

Figure 2.2: Log Error plot–Tail

seems to be a trade-off between the number of skipping and the steady state error. The

more the frequency of skipping, the more is the steady state error. Thus we can say that

Steady state error ∝ Frequency of skipping (2.5)

Inference

Since the unconstrained minimum x∗ is out of the constrained set in this situation,

the projected gradient descent method cannot reach and settle at the fixed point of the

equation,

x = πQ(x− η∇f(x))

χ
x

x− η∇f(x)

8

For alternate skipping method, or projected gradient descent with skip frequency =2,

the fixed point equations will look like,

y = x− η∇f(x)

x = πQ(y − η∇f(y))

χ
x

y = x− η∇f(x)
y − η∇f(y)

We can derive similar fixed point equations for other skipping frequencies as well. Now

if we overlap both above diagrams we get something as below,

χ

x∗1 x∗2

As displayed in the above figure, the fixed point of normal projected gradient descent

and projected gradient descent with 1 skip differs. This is the main reason for the steady

state error difference seen in the Error plot.

2.2.4 Possible Workaround

Consider the comparison between the steady state fixed point equation of normal pro-

jected gradient descent and the projected gradient descent with skip frequency as 1,

Normal Projected gradient descent

x∗ = Pr(x∗ − η∇f(x∗)) (2.6)

9

Projected Gradient descent with one Skip

x∗ = Pr(x∗ − η∇f(x∗)− η∇f(x∗ − η∇f(x∗))︸ ︷︷ ︸
Error Cause

) (2.7)

The steady state error difference is due to the excess η∇f(x∗ − η∇f(x∗)) term in the

fixed point equation of projected gradient descent with freq 1.

Reduction of Error term

We can reduce this error by making η → 0 as t → 0 still ensuring that the sequence of

η’s do not violate the gradient decent constraints.

Simulating the above condition we get the following tail plot,

which shows a O(1
t
) convergence as ηt = O(1

t
)

2.3 Limitations

Even though this practice of skipping might become a bit practically relevant, in theory

we do not get a provable time reduction as,

O
(n
c

)
= O(n) (2.8)

2.4 Possible Future Extensions

• Error Bounds :
A closed form expression can be found for the trade-off between the number of

10

skipping and the resulting error.

• Approximate Solution:
If we keep increasing the skipping frequency to∞, which is equivalent to saying
we get the solution of this thought algorithm as Pr(x#). x# denotes the uncon-
strained minimum. In other words, x# is the minimizer of

min
x
f(x) (2.9)

The question to be addressed here is, how good is the approximation Pr(x#) as a
solution of the constrained case. Are there some conditions which can quantify
this thought?

• Initialization:
As it is a known fact that Newton descent method has two phase convergence :
Damped phase and quadratic convergence phase. A clever initialization can lead
to the quadratic convergence phase. For further discussion on Newton’s method
please refer to Boyd and Vandenberghe (2004).

From looking at a similar thought process, can initialization with Pr(x#) lead to
better convergence rate?

11

CHAPTER 3

Rank Preserving Flow

3.1 Symmetric matrices

Let S(N) denote the set of all N ×N symmetric matrices. For integers 1 ≤ n ≤ N we

have,

S(n,N) = {X ∈ RN×N |XT = X, rank X = n}, (3.1)

denotes the set of all N ×N symmetric matrices of rank n.

For proof of further proposition please refer to Helmke et al. (1993)

Proposition 1: S(n,N) is a smooth manifold of dimension 1
2
n(2N − n + 1) and has

n+ 1 connected components

S(p, q,N) = {X ∈ S(n,N)|signature X = p− q} (3.2)

where p, q ≥ 0, p+ q = n.

3.1.1 Tangent Space

Consider the mapping f : M(n) → S(n) where A 7→ AAT . The tangent space at

x ∈ f−1(y) is equal to ker(Dfx). So currently for the case of function f we have Df as

DfA(B) = BAT + ABT (3.3)

For a detailed explanation on tangent spaces do take a look at Absil et al. (2009)

The tangent space of S(n,N) at an element X is

TXS(n,N) = {∆X +X∆T |∆ ∈ RN×N} (3.4)

3.1.2 Rank preserving flow

A differential equation Ẋ = F (X) evolving on the matrix space S(N) is said to eb rank

preserving if rank of X(t) is constant as a function of t.The following lemma gives a

simple characterization of rank preserving vector fields on S(N).

Lemma 1: Let I ⊂ R be an interval and let A(t) ∈ RN×N , t ∈ I , be a continuous

family of matrices, Then

Ẋ(t) = A(t)X(t) +X(t)A(t)T , X(0) ∈ S(N) (3.5)

is a rank conserving flow on S(N). Conversely, any rank preserving vector field on

S(N) is of this form.

For proof do refer to Helmke et al. (1993).

3.2 Ricatti Flow

3.2.1 Riccati – First form

We get good comparisons from Helmke et al. (1993) on the properties of the update

equations. By Lemma 1, every rank preserving flow on S(N) has the form,

Ẋ = F (X)X +XF (X)T (3.6)

Theorem :

1. The Riccati Differential equation defined as,

Ẋ = (A−X)X +X(A−X) (3.7)

where A ∈ RN×N is symmetric is rank preserving flow on S(n,N)

2. Assume A is invertible. Then solutions X(t) of (3.7) are given by

X(t) = etAX0[IN + A−1(e2At − IN)X0]−1etA (3.8)

13

3. For any positive semi-definite matrix initial condition X(0) = X(0)T ≥ 0, the
solution of (3.7) exists for all t ≥ 0 and is positive semi-definite.

4. Every positive semi-definite solution X(t) ∈ S+(n,N) = S(n, o,N) of (3.7)
converges to the connected component of the set of equilibrium points, charac-
terized by (A − X∞)X∞ = 0. Also X∞ is positive semi-definite and has rank
≤ n. If A has distinct eigenvalues then every positive semi-definite solution X(t)
converges to an equilibrium point.

Now this gives a good intuition as to why the update equation in (??) is a rank

preserving update.

If we see closely, the for of update equation (??) can be rewritten as,

X+ = X − η(∇f(X)XΛ + ΛTX∇f(X)), (3.9)

where Λ = I − η
2
QUQ

T
U∇f(X).

This looks similar to the rank preserving flow, assuring the readers that the update equa-

tion in the X domain indeed retains the rank even after updating.

Riccati – Second form

Now due to some more stability properties we look at a different gradient flow like

differential equation given as follows,

Ẋ = (A−XXT)X, X(0) ∈ RN×n, (3.10)

for A = AT ∈ RN×N real symmetric.

The main motivation of studying flow (3.10) on RN×n is that it induces flow (3.7)

on S+(n,N).

This can eb seen as, let H = XXT , then

Ḣ = ẊXT +XẊT = (A−H)H +H(A−H) (3.11)

14

Convergence properties of flow (3.10) are given in the next result

Theorem :

1. The differential equation in (3.10) is a rank preserving flow on RN×n.

2. The solution for (3.10) exits for all t ≥ 0 and converges for t → ∞ to a con-
nected component of the set of equilibrium points X∞ of rank ≤ n. Equilibrium
components are characterized by (A − X∞XT

∞)X∞ = 0 or equivalently by the
condition that the columns of XT

∞ generate an A-invariant subspace of RN . If
n = 1 and A has distinct eigenvalues, then every solution of X(t) converges to
the equilibrium point.

3. The function V : RN×n → R, V (X) := ||A−XXT ||2 is a Lyapunov function of
(3.10)

This gives the intuition for the update equation (4.4). The update of the algorithm

goes as,

U+ = U − η∇f(UUT)U (3.12)

3.3 Possible Work Direction

The problem which seemed quite intriguing is explained as following, Consider the

equation for Rank preserving flow as below

Ẋ(t) = A(t)X(t) +X(t)A(t)T , X(0) ∈ S(N) (3.13)

For the above to be an update step of a Gradient descent flow, what should be the

conditions on A(t).

15

CHAPTER 4

Factored Gradient Descent

4.1 Problem Structure

Let f : Rn×n → R be a convex function. Let us take the following optimization

problem for further analysis,

min
X∈Rn×n

f(X)

subject to X � 0

rank(X) = k

A standard method of approaching is to start as follows

Yk = Xk − η∇f(Xk)

Xk+1 = Pr(Yk)

where the operator Pr(.) projects the operand to the space of PSD rank r matrices.

4.1.1 Major Problem

The projection step for the required algorithm requires computation of a singular value

decomposition (SVD) at each step. Evaluating a SVD for matrix X ∈ Rm×n requires

O(min{nm2, n2m}). Thus this algorithm quite time consuming when used with the

current time data matrices with large dimensions.

4.2 Alternate approach

Factored gradient descent (FGD) provides an alternative way to the above problem.

The PSD constraint matrices enables us to replace X by its cholesky decomposition as

follows,

X = UUT (4.1)

where X ∈ Rn×n, U ∈ Rn×r and r << n. Here we are using UT as we are only

considering real variables.

Thus the optimization problem becomes,

min
U∈Rn×r

g(U)

where r ≤ n (4.2)

where g(U) = f(UUT).

4.2.1 Benefits

Instead of running the update steps in ’X’ domain, we try to update the algorithm in the

’U ’ domain.

We can list the benefits of the above approach as follows,

• In-built Positive semi-definiteness:
The update step in ’U ’ domain gets mapped back to the ’X’ domain by the map-
ping X = UUT which ensures matrix X is a PSD matrix.

• Rank preserving update:
The update step occurs is the ’U ’ domain which is a rank-r space. Thus the rank
constraint of rank(X)≤ r is always satisfied as X = UUT cannot have a rank
more than r.

17

4.3 Update Algorithm

We try to define the update algorithm for the optimization problem

min
U∈Rn×r

g(U)

where r ≤ n (4.3)

The standard update of the algorithm goes as,

U+ = U − η∇g(U) (4.4)

We can further evaluate∇g(U) as,

∇g(U) = ∇(f(UUT)) = 2∇f(UUT)U (4.5)

Thus, we get the update equation as,

U+ = U − η∇f(UUT)U (4.6)

which translates in the X domain as,

X+ = U+(U+)T

= (U − η∇f(UUT)U)(U − η∇f(UUT)U)T

= UUT − η∇f(UUT)UUT − UUTη∇f(UUT)T − η2∇f(UUT)UUT∇f(UUT)

= X − η∇f(X)X − ηX∇f(X) + η2∇f(X)X∇f(X)

Further studies on the convergence rate for various scenarios for the above update equa-

tion has been done in the paper Bhojanapalli et al. (2015).

18

4.4 Relation with Riccati Flow

Recalling the Ricatti flow of the first form (3.7), we have,

Ẋ = F (X)X +XF (X)T (4.7)

Comparing it to our equation of update in ’X’ domain above we get,

X+ = X − η∇f(X)X − ηX∇f(X) + η2∇f(X)X∇f(X) (4.8)

which can also be written as,

X+ = X − η∇f(X)XΛ− ηΛX∇f(X) (4.9)

where Λ = I − η
2
QUQ

T
U∇f(X).

Intuitively, as it fits the Riccati form, the above equation (4.9) is a rank preserving up-

date equation.

19

CHAPTER 5

Generalised Factored Gradient Descent

5.1 Problem Structure

Consider a convex function f : Rn×m → R which is to be optimized with respect to the

variable X ∈ Rn×m

min
X∈Rn×m

f(X)

rank(X) = r

Taking inspiration from Bhojanapalli et al. (2015). We try to split the matrix into

two factors W ∈ Rn×r and H ∈ Rm×r such that X = WH . After parametrizing the

problem as X = WH , we try to convert the optimization problems in terms of W and

H separately.

We have to solve the below problems,

W domain

When updating for W we have to solve,

min
W∈Rn×r

gH(W)

where gH(W) = f(WH) for a particular fixed H .

H domain

When updating for H we have to solve,

min
H∈Rr×m

pW (H)

where pW (H) = f(WH) for a certain fixed W .

5.2 Major Improvements

• Instead of the rigidity of the square matrix with dimension n× n in citesujay, we
have relaxed to a general rectangular matrix of n×m.

• Bhojanapalli et al. (2015) analysis and algorithm can be considered the special
case of the current analysis.

• We cannot currently prove the PSD matrix constraint satisfaction for our case.

• We can guarantee the rank preserving flow for the algorithm. If one start with
rank r matrix, it will stay rank r.

• Bhojanapalli et al. (2015) had to make the optimization scheme as non convex
when going from one domain to another. But in out case we are maintaining the
convexity at each step of our scheme.

5.3 Theoretical Analysis

W update

Here we try to optimize over the problem,

min
W∈Rn×r

gH(W)

(5.1)

where gH(W) = f(WH) = f(X). Thus our update equation should be of the form,

W+ = arg min
W∈Rn×r

gH(W) (5.2)

21

Thus after every update of such form, since the function gH(W) is convex in W , we

have that,

gH(W+) ≤ gH(W)

⇒ f(W+H) ≤ f(WH) ∀H ∈ Rr×m

(5.3)

H update

Here we try to optimize over the problem,

min
H∈Rr×m

pW (H)

(5.4)

where pW (H) = f(WH) = f(X). Thus our update equation should be of the form,

H+ = arg min
H∈Rr×m

pW (H) (5.5)

Thus after every update of such form, since the function pW (H) is convex in H , we

have that,

pW (H+) ≤ pW (H)

⇒ f(WH+) ≤ f(WH) ∀W ∈ Rn×r

(5.6)

22

X update

Recombining the above two different update steps to return in the X domain, we get

the update step as

Wn+1 = arg min
W∈Rn×r

gHn(W)

Hn+1 = arg min
H∈Rr×m

pWn+1(H)

Xn+1 = Wn+1Hn+1

After the first update of Wn+1 we can say that,

f(Wn+1Hn) ≤ f(WnHn)

After the update of Hn+1 we have the update step as,

f(Wn+1Hn+1) ≤ f(Wn+1Hn) ≤ f(WnHn) (5.7)

Thus,

f(Xn+1) ≤ f(Xn) (5.8)

Since the function is convex we cna say that,

f(X0) ≥ f(X1) ≥ · · · ≥ f(X∗r)

limn→∞ f(Xn)→ f(X∗r)

where X∗r is the optimal r-rank matrix. The convergence of the above statement is

because of a lower bounded monotonically decreasing series.

23

5.4 Descent Algorithm

5.4.1 W update

Here we try to optimize over the problem,

min
W∈Rn×r

gH(W)

(5.9)

where gH(W) = f(WH) = f(X). Thus our update equation should be of the form,

W+ = W − η1∇gH(W) (5.10)

where the gradient is w.r.t. W and the step size η1 < 1
||∇2gH(W)||2 . Thue we try to

evaluate∇gH(.) and ∇2gH(.). We get the following,

∇gH(W) = ∇f(WH)HT (5.11)

For the special case of W and H being vectors and denoted by w and h respectively, we

can say the following,

∇2gH(w) =

[∑
j

[∑
l

∂2f(wh)

∂wihj∂wkhl
hl

]
hj

]
(5.12)

which gives the indication that for L Lipschitz smooth function, we get

η1 <
1

∇2gH(W)
∝ 1

L||HTH||
(recheck) (5.13)

Thus our update equation becomes,

W+ = W − η1∇f(WH)HT (5.14)

24

Convergence Results

Theorem 1 The convergence rate of the update algorithm (5.14) in theW domain when

H is kept constant is given by,

g(Wn+1)− g(W ∗) ≤ ||W0 −W ∗||2

nβ

where β =
(
L||HTH||η21

2
− η1

)
.

For proof, please refer to Appendix A

5.4.2 H update

Here we try to optimize over the problem,

min
H∈Rr×m

p(H)

(5.15)

where p(H) = f(WH) = f(X). Thus our update equation should be of the form,

H+ = H − η2∇p(H) (5.16)

where the gradient is w.r.t. W and the step size η2 <
1

||∇2p(H)||2 . Thus, we try to evaluate

∇p(.) and ∇2p(.). We get the following,

∇p(W) = W T∇f(WH) (5.17)

For the special case of W and H being vectors and denoted by w and h respectively, we

can say the following,

∇2p(w) =

[∑
i

[∑
k

∂2f(wh)

∂wihj∂wkhl
wk

]
wi

]
(5.18)

25

which gives the indication that for L Lipschitz smooth function, we get

η2 <
1

∇2p(H)
∝ 1

L||WnW T
n ||

(recheck) (5.19)

Thus our update equation becomes,

H+ = H − η2W
T∇f(WH) (5.20)

Convergence Results

Theorem 2 The convergence rate of the update algorithm (5.20) in theW domain when

H is kept constant is given by,

pW (Hn+1)− pW (H∗) ≤ ||H0 −H∗||2

nα

where α =
(
L||WTW ||η21

2
− η1

)
.

5.4.3 X update

Taking both the update equation (5.14) and (5.20) into the X domain we get,

Xn+1 = (Wn+1)(Hn+1) (5.21)

Xn+1 = Xn − η2WnW
T
n ∇f(Xn)− η1∇f(Xn)HT

nHn + η2η1∇f(Xn)XT
n∇f(Xn)

Convergence result

Theorem 3 The convergence rate of the update algorithm in the X domain (5.21) is

given by,

Xn+1 −X∗ ≤
1∑n

i=0
αn−i

Πi
j=0cn−j

where αn =
(
L||HnHT

n ||η22
2

− η2

)
and cn = (1 + αn∆Hn).

26

For proof please refer to Appendix C

5.4.4 Simulation 2

Objective function

min
X∈Rn×m

||X − av1v
T
2 + bv3v

T
4 ||2

where a, b ∈ R and v1, v2, v3, v4 chosen to fit the dimensionality constraint appropri-

ately.

Convergence plot Rank plot

Figure 5.1: Plot of function value with the proposed algorithm

Norm plot

5.5 Recent advancement

Recently, a paper Tu et al. (2015) proved the standard convergence results for the algo-

rithm.

min
U,V

f(UV T) + h(UTU − V TV)

27

Figure 5.2: Plot of the rank of matrix throughout the simulation

Figure 5.3: Plot of ||W ||2 and ||H||2 throughout the simulation

where h is strongly smoothly convex with global minima at 0. They proved local linear

convergence to neighbourhood of X∗r .

d((U+, V +), X∗) ≤ γd((U, V), X∗) + ηM ||X∗ −X∗r ||2

where γ < 1.

5.6 Possible Future Extensions

• ADMM-type approach for rank constrained optimization:
The current approach only focuses on the one constraint i.e. maintaining rank-r.

28

We can maybe have other linear constraints and develop a ADMM like optimiza-
tion scheme which can converge provably.

• Accelerated gradient approaches:
The basic case of convergence has been proved not long ago, so one can work on
Accelerated version of the same in order to prove stronger convergence rate.

• Generalized Descent proof:
Going to an even broader sense, a generalised result showing that an established
descent algorithm for single variable can be applied in this scenario i.e. can be
applied to either W domain update or H domain update or both the variables
having the same descent algorithm or different descent algorithm and still can be
proved to converge.

29

CHAPTER 6

Python Code for simulation 1

Listing 6.1: Rank maintaing simulation

import numpy as np
from matplotlib.pyplot import *
from numpy.linalg import inv
n = 5

5 n1 = 5
n2 = 5
k = 2
m = 4
s = (n,k)

10 a = abs(np.random.rand())+2.3
b = abs(np.random.rand())*0.0001
v1 = np.random.rand(n1, 1)
v2 = np.random.rand(n2, 1)
v3 = np.random.rand(n2, 1)

15 v4 = np.random.rand(n1, 1)
v1[-1][0] = 1.
v3[-1][0] = -np.dot(v2[:-1].T, v3[:-1])
v1 = v1/np.linalg.norm(v1, ’fro’)
v1 = v3/np.linalg.norm(v3, ’fro’)

20 v1 = v4/np.linalg.norm(v4, ’fro’)
v2 = v2/np.linalg.norm(v2, ’fro’)
W = np.random.rand(n1, k)
H = np.random.rand(k, n2)
U = np.random.rand(n, k)

25

def funct(W,H):
re turn np.linalg.norm(np.dot(W,H) -a*a*np.dot(v1,v1.T) +\
b*b*np.dot(v2, v2.T), ’fro’)**2

30 def del_funct(W,H):
re turn 2*(np.dot(W,H) -a*a*np.dot(v1,v1.T) +\
b*b*np.dot(v2, v2.T))

35 def eta():
re turn 1./16/(a*a+2*b*b)

def norm_matrix(X):
re turn np.linalg.norm(X, ’fro’)

40

i=1
Wold = W
Hold = H
Uold = U

45 W_Values = []
W_ver = []
H_Values = []
H_ver = []
U_Values = []

50 U_ver = []
X_ver = []
X_Values = []

whi le(i < 1000):
55 i=i+1

U = Uold - eta()*np.dot(del_funct(Uold,Uold.T), Uold)
W = Wold - eta()*np.dot(del_funct(Wold,Hold), Hold.T)
H = Hold - eta()*np.dot(Wold.T, del_funct(Wold,Hold))
Uold = U

60 Wold = W
Hold = H

Wstar = Wold
Hstar = Hold
Ustar = Uold

65 fstar = funct(Ustar,Ustar.T)

W = np.random.rand(n1, k)
H = np.random.rand(k, n2)

70 U = np.random.rand(n, k)

Wold = W
Hold = H
Uold = U

75

W_Values.append(funct(W,H))
W_ver.append(norm_matrix(W))
U_Values.append(funct(U,U.T))
U_ver.append(norm_matrix(U))

80 H_Values.append(funct(W,H))
H_ver.append(norm_matrix(H))
Xold =np.dot(W,H)
X_Values.append(funct(W,H))
X_ver.append(norm_matrix(np.dot(W,H)))

85 W_rank = [np.linalg.matrix_rank(Wold)]
H_rank =[np.linalg.matrix_rank(Hold)]
X_rank = [np.linalg.matrix_rank(Xold)]
U_rank = [np.linalg.matrix_rank(Uold)]
i=1

90

whi le(i < 1000):

31

i=i+1
U = Uold - eta()*np.dot(del_funct(Uold,Uold.T), Uold)
W = Wold - eta()*np.dot(del_funct(Wold,Hold), Hold.T)

95 H = Hold - eta()*np.dot(Wold.T, del_funct(Wold,Hold))
W_Values.append((funct(W,H) - fstar))
W_ver.append(norm_matrix(W))
U_Values.append((funct(U,U.T) - fstar))
U_ver.append(norm_matrix(U))

100 H_Values.append((funct(W,H) - fstar))
H_ver.append(norm_matrix(H))
W_rank.append(np.linalg.matrix_rank(W))
H_rank.append(np.linalg.matrix_rank(H))
U_rank.append(np.linalg.matrix_rank(U))

105 Uold = U
Wold = W
Hold = H

figure(1)
110 plot(range(i), np.log(W_ver), label = "W")

plot(range(i), np.log(H_ver), label = "H")
plot(range(i), np.log(U_ver), label = "U")
legend(loc = ’center left’, bbox_to_anchor = (1.0, 0.5))
title(r’Values of the Frobenium norm of matrices UU^T and X’)

115 xlabel("Time steps")
figure(2)
plot(range(i), np.log(H_Values), label = r"$X = WH$ version")
plot(range(i), np.log(U_Values), label = r"$X = UU^T$ version")
legend(loc = ’center left’, bbox_to_anchor = (1.0, 0.5))

120 title("Function errors in the two methods")
xlabel("Time steps")
ylabel("Log of error from f^*")
figure(3)
plot(range(i), H_rank, label = r"$X = WH$ version")

125 plot(range(i), U_rank, label = r"$X = UU^T$ version")
legend(loc = ’center left’, bbox_to_anchor = (1.0, 0.5))
title("Rank in the two methods")
xlabel("Time steps")
ylim([0,4])

130 show()

32

CHAPTER 7

Python Code for simulation 2

Listing 7.1: Skippings in Proceted Gradient descent

from matplotlib.pyplot import *
from numpy import *
from math import *

5 a = array([-127,64])
b = array([26,13])
c = (a+b)/2
c0 = array([-4./23, 14./23])
t = 100

10 def step(t):
re turn 1./t

def f(x):
re turn sqrt((x[0]-a[0])**2+(x[1]-a[1])**2) +\

15 sqrt((x[0]-b[0])**2+(x[1]-b[1])**2) -\
sqrt((c[0]-a[0])**2+(c[1]-a[1])**2) -\
sqrt((c[0]-b[0])**2+(c[1]-b[1])**2)

def curr_t(t):
20 re turn int(1.+4/t**2)

def f1(x):
re turn 3*x[0]**2 + 5*x[0]*x[1] +\
4*x[1]**2 - 2*x[0] - 4*x[1] + 27

25 def diff_f1(x):
re turn array([6*x[0] + 5*x[1] -2,\
5*x[0] +8*x[1] -4])

def proj(x):
re turn array([x[0],0])

30 no = 5000
freq = range(1,7)
color1 = [’r-’,’g-’,’b-’,’c-’,’m-’,’y-’,’k-’]
color2 = [’r*’,’g.’,’b.’,’c.’,’m.’,’y.’,’k.’]
lam = 0.005

35 stats = []
f o r j in freq:

t = 100
x0 = array([10,10])
xcurr1 = x0

40 Ini_try=[]

xarray = []
yarray = []
Ini_try.append(log(f1(xcurr1)-f1(array(c0))))
p r i n t "Freq = "+str(j)

45 f o r i in range(1,no*j):
xarray.append(xcurr1[0])
yarray.append(xcurr1[1])
xcurr1 = xcurr1 - step(t)*diff_f1(xcurr1)
t = t+1

50 i f (i%j == 0):

xcurr1 = proj(xcurr1)
Ini_try.append(log(f1(xcurr1)-f1(array(c0))))

figure(1)
55 i f j == 1:

plot(range(no), Ini_try, color1[j-1],\
label = "Normal Projected Gradient Descent")

e l s e:
plot(range(no), Ini_try, color1[j-1],\

60 label = "Freq = "+str(j))
plot(range(no), Ini_try, color2[j-1])
figure(2)
i f j == 1:

plot(xarray,yarray, color1[j-1],\
65 label = "Normal Projected Gradient Descent")

e l s e:
plot(xarray,yarray, color1[j-1],\
label = "Freq = "+str(j))

plot(xarray,yarray, color2[j-1])
70 stats.append(Ini_try[1:])

figure(3)
z = 1
f o r i in stats[2:]:

z = z+1
75

plot(range(len(i)), [log(abs(i[j]-stats[1][j])) f o r j in range(len(i))],\
color1[z-1], label = "Freq = "+str(z))

title("Errors between frequencies")
80 xlabel(’Steps’)

ylabel(’Error’)
legend(loc = ’center left’, bbox_to_anchor = (1.0, 0.5))

figure(2)
85 plot(c0[0],c0[1],color2[-2])

title("Points given by the algorithm")
legend(loc = ’center left’, bbox_to_anchor = (1.0, 0.5))
figure(1)
xlabel(’Steps’)

90 ylabel(’Error’)
title("Saturation Error")

34

legend(loc = ’center left’, bbox_to_anchor = (1.0, 0.5))

delta = 0.25
95 x = np.arange(-10.0, 10.0, delta)

y = np.arange(-10.0, 10.0, delta)
X, Y = np.meshgrid(x, y)
Z1 = mlab.bivariate_normal(X, Y, 1.0, 1.0, 0.0, 0.0)
Z2 = mlab.bivariate_normal(X, Y, 1.5, 0.5, 1, 1)

100 Z = 10.0 * (Z2 - Z1)
f o r i in range(len(X[0])):

f o r j in range(len(X)):
Z[i][j] = f1([X[i][j], Y[i][j]])

105 figure(2)
CS = contour(X, Y, Z)
clabel(CS, inline=1, fontsize=10)
title(’Simplest default with labels’)
show()

35

APPENDIX A

Convergence in W domain

Theorem 1: The convergence rate of the update algorithm (5.14) in theW domain when

H is kept constant is given by,

g(Wn+1)− g(W ∗) ≤ ||W0 −W ∗||2

nβ

where β =
(
L||HTH||η21

2
− η1

)
.

Proof 1

gH(Y) ≤ gH(X) +∇gH(X)T (Y −X) +
L||HT

nHn||
2

||Y −X||2 (A.1)

Thus for our case we have for the nth step that,

gH(Wn+1)− gH(Wn) ≤ −η1∇g(W)T∇g(W) +
L||HT

nHn||η2
1

2
||∇g(W)||2

≤
(
L||HTH||η2

1

2
− η1

)
︸ ︷︷ ︸

β

||∇g(W)||2

δn+1 − δn ≤ β||∇g(W)||2

Now we know that,

gH(Xn)− gH(X∗) ≤ ∇gH(Xn)T (Xn −X∗)

δn ≤ ||∇gH(Wn)||||(Wn −W ∗)||
δn

||(Wn −W ∗)||
≤ ||∇gH(Wn)||

(A.2)

For the case when β ≤ 0, we have that,

δn+1 − δn ≤ β

(
δn

||Wn −W ∗||

)2

Since we have a uniform decrease with n. We have,

δn+1 − δn ≤ β

(
δn

||W0 −W ∗||

)2

After manipulation we get,

1

δn+1

− 1

δn
≥ β

||W0 −W ∗||2
(A.3)

Thus summing the telescopic series we have,

1

δn+1

− 1

δ0

≥ nβ

||W0 −W ∗||2
1

δn+1

≥ nβ

||W0 −W ∗||2

δn+1 ≤
||W0 −W ∗||2

nβ

gH(Wn+1)− gH(W ∗) ≤ ||W0 −W ∗||2

nβ

37

APPENDIX B

Convergence in H domain

Theorem ??: The convergence rate of the update algorithm (5.20) in the W domain

when H is kept constant is given by,

pW (Hn+1)− pW (H∗) ≤ ||H0 −H∗||2

nα

where α =
(
L||WTW ||η21

2
− η1

)
.

Proof 2

pW (Y) ≤ pW (X) +∇pW (X)T (Y −X) +
L||WW T ||

2
||Y −X||2 (B.1)

Thus for our case we have for the nth step that,

pW (Hn+1)− pW (Hn) ≤ −η2∇pW (H)T∇pW (H) +
L||WW T ||η2

2

2
||∇pW (H)||2

≤
(
L||WW T ||η2

2

2
− η1

)
︸ ︷︷ ︸

α

||∇pW (H)||2

δn+1 − δn ≤ α||∇pW (H)||2

Now we know that,

pW (Xn)− pW (X∗) ≤ ∇pW (Xn)T (Xn −X∗)

δn ≤ ||∇pW (Hn)||||(Hn −H∗)||
δn

||(Hn −H∗)||
≤ ||∇pW (Hn)||

(B.2)

For the case when α ≤ 0, we have that,

δn+1 − δn ≤ α

(
δn

||Hn −H∗||

)2

Since we have a uniform decrease with n. We have,

δn+1 − δn ≤ α

(
δn

||H0 −H∗||

)2

After manipulation we get,

1

δn+1

− 1

δn
≥ α

||H0 −H∗||2
(B.3)

Thus summing the telescopic series we have,

1

δn+1

− 1

δ0

≥ nα

||H0 −H∗||2
1

δn+1

≥ nα

||H0 −H∗||2

δn+1 ≤
||H0 −H∗||2

nα

pW (Hn+1)− pW (H∗) ≤ ||H0 −H∗||2

nα

39

APPENDIX C

Convergence in X Domain

Theorem ??: The convergence rate of the update algorithm in the X domain (5.21) is

given by,

Xn+1 −X∗ ≤
1∑n

i=0
αn−i

Πi
j=0cn−j

where αn =
(
L||HnHT

n ||η22
2

− η2

)
and cn = (1 + αn∆Hn).

Proof 3

g(Wn+1)− g(Wn) ≤
(
L||HT

nHn||η2
1

2
− η1

)
||∇g(Wn)||2

f(Wn+1Hn)− f(WnHn) ≤
(
L||HT

nHn||η2
1

2
− η1

)
||∇f(WnHn)HT

n ||2

and

p(Hn+1)− p(Hn) ≤
(
L||WnW

T
n ||η2

2

2
− η2

)
||∇p(Hn)||2

f(WnHn+1)− f(WnHn) ≤
(
L||WnW

T
n ||η2

2

2
− η2

)
||Wn∇f(WnHn)||2

f(Wn+1Hn+1)− f(Wn+1Hn) ≤
(
L||Wn+1W

T
n+1||η2

2

2
− η2

)
||Wn+1∇f(Wn+1Hn)||2

Thus,

f(Wn+1Hn+1)− f(WnHn) ≤

(
L||Wn+1W

T
n+1||η2

2

2
− η2

)
||Wn+1∇f(Wn+1Hn)||2 +

(
L||HT

nHn||η2
1

2
− η1

)
||∇f(WnHn)HT

n ||2

Or we can also go the other way,

f(Wn+1Hn+1)− f(WnHn) ≤
(
L||WnW

T
n ||η2

2

2
− η2

)
||Wn∇f(WnHn)||2 +

(
L||HT

n+1Hn+1||η2
1

2
− η1

)
||∇f(WnHn+1)HT

n+1||2

We know that,

First

p(Hn)− p(H∗)
||(Hn −H∗)||

≤ ||∇p(Hn)||

f(WnHn)− f(WnH
∗)

||(Hn −H∗)||
≤ ||W T

n ∇f(WnHn)||

(C.1)

Second

g(Xn)− g(X∗)

||(Wn −W ∗)||
≤ ||∇g(Wn)||

f(WnHn)− f(W ∗Hn)

||(Wn −W ∗)||
≤ ||∇f(WnHn)HT

n ||

(C.2)

Let

∆Wn = f(WnH
∗)− f(W ∗H∗)

∆Hn = f(W ∗Hn)− f(W ∗H∗)

and

δn = f(Xn)− f(X∗) = f(WnHn)− f(W ∗X∗)

.

Thus from the above few equations we get,

δn+1 − δn ≤
(
L||Wn+1W

T
n+1||η2

2

2
− η2

)
(δn+1 −∆Wn+1)

2 +

(
L||HT

nHn||η2
1

2
− η1

)
(δn −∆Hn)2

δn+1 − δn ≤
(
L||WnW

T
n ||η2

2

2
− η2

)
(δn −∆Wn)2 +

(
L||HT

n+1Hn+1||η2
1

2
− η1

)
(δn+1 −∆Hn+1)

2

(C.3)

Let

βn = −
(
L||WnW

T
n ||η2

2

2
− η2

)

αn = −
(
L||HT

nHn||η2
1

2
− η1

)
41

(Just to make the constants positive)

Thus for the telescopic series we have,

Telescopic Series 1

δn+1 − δn ≤ −βn+1(δn+1 −∆Wn+1)2 − αn(δn −∆Hn)2

≤ −βn+1(δ2
n+1 − 2δn+1∆Wn+1 + ∆2

Wn+1
)− αn(δ2

n − 2δn∆Hn + ∆2
Hn

)

(1− 2βn+1∆Wn+1)δn+1 − (1 + αn∆Hn)δn ≤ −βn+1(δ2
n+1 + ∆2

Wn+1
)− αn(δ2

n + ∆2
Hn

)

(1− 2βn+1∆Wn+1)δn+1 − (1 + αn∆Hn)δn ≤ −βn+1δ
2
n+1 − αnδ2

n

(1− 2βn+1∆Wn+1)δn+1 − (1 + αn∆Hn)δn ≤ −αnδ2
n

(C.4)

Telescopic Series 2

δn+1 − δn ≤ −βn+1(δn+1 −∆Wn+1)2 − αn(δn −∆Hn)2

≤ −αn(δ2
n − 2δn∆Hn + ∆2

Hn
)

δn+1 − (1 + αn∆Hn)δn ≤ −αn(δ2
n + ∆2

Hn
)

δn+1 − (1 + αn∆Hn)δn ≤ −αnδ2
n

δn+1 − (1 + αn∆Hn)δn ≤ −αnδ2
n

(C.5)

We can go further with telescopic series 2 as follows,

Let

cn = (1 + αn∆Hn)

42

. Thus we have,

δn+1 − cnδn ≤ −αnδ2
n

1

δn
− cn
δn+1

≤ −αn
δn
δn+1

1

δn
− cn
δn+1

≤ −αn

1

δn+1

− 1

cnδn
≥ αn

cn
1

δn+1

− 1

cncn−1δn−1

≥ αn
cn

+
αn−1

cncn−1

1

δn+1

− 1

δ0Πn
i=0ci

≥
n∑
i=0

αn−i
Πi
j=0cn−j

1

δn+1

≥
n∑
i=0

αn−i
Πi
j=0cn−j

δn+1 ≤
1∑n

i=0
αn−i

Πi
j=0cn−j

(C.6)

43

REFERENCES

1. Absil, P.-A., R. Mahony, and R. Sepulchre, Optimization algorithms on matrix mani-
folds. Princeton University Press, 2009.

2. Bhojanapalli, S., A. Kyrillidis, and S. Sanghavi (2015). Dropping convexity for faster
semi-definite optimization. arXiv preprint.

3. Boyd, S. and L. Vandenberghe, Convex optimization. Cambridge university press,
2004.

4. Golub, G. H. (1996). Cf van loan matrix computations. The Johns Hopkins.

5. Helmke, U., M. Prechtel, and M. A. Shayman (1993). Riccati-like flows and matrix
approximations. Kybernetika, 29(6), 563–582.

6. Horn, R. A. and C. R. Johnson (1985). Matrix analysis cambridge university press.
New York.

7. Tu, S., R. Boczar, M. Soltanolkotabi, and B. Recht (2015). Low-rank solutions of
linear matrix equations via procrustes flow. arXiv preprint arXiv:1507.03566.

44

